
An Embedded Approach to Fall

Detection and Human Activity

Recognition using Wi-Fi Channel State

Information

(This project report has been submitted in partial fulfillment of the requirements

for the degree of Bachelor of Science in Electrical and Electronic Engineering)

Submitted By

Exam Roll: 63969 Exam Roll: 63949

Reg No: 2017614892 Reg No: 2017114842

Session: 2017-18 Session: 2017-18

Dept. of Electrical and Electronic Engineering

University of Dhaka

June 27, 2022



Abstract

Fall detection is an essential part of any elderly or patient assistance system. Hu-

man activity recognition techniques are widely used to implement fall detection

systems. Most solutions employ wearable devices or cameras to collect data, both

of which possess various critical drawbacks. We propose a device-free fall detection

system using WiFi channel state information(CSI) which lacks the drawbacks of

mentioned solutions yet provides competitive performance. We used two embed-

ded devices(ESP32) to collect CSI (Channel State Information) as an embedded

approach provides more flexibility in case of deployment. We recorded data while

13 volunteers performed various tasks. After rigorous preprocessing involving re-

sampling, phase calibration, amplitude denoising, filtering, feature extraction, fea-

ture selection, and classification, we were able to achieve an F1 score of 98.5% in

10-fold cross-validation for fall detection and 96.9% for human activity recogni-

tion.
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CHAPTER 1

INTRODUCTION

Healthcare has always been a fundamental concern for human society, and it is

especially needed for the sick and the elderly. The percentage of persons aged over

65 was 9% in 2020, with the rate being as high as 28% in a single country [4].

For an elderly person or a sick patient, falling can be devastating, and immediate

attention is required in such a scenario. The development of fall detection systems

is essential for this reason. Although many fall detection systems exist today, most

of them are based on wearable devices or computer vision, which have some critical

drawbacks, caused by the fundamental nature of the systems. This project is aimed

to provide a non-contact fall detection system that is free of those drawbacks

and is yet as effective as the existing solutions. Furthermore, we use embedded

devices as this makes the system highly modifiable, deployable in many different

environments, and comparatively affordable.

1.1 Motivation

Sensor-based activity detection requires the user to wear a device containing the

sensors in many cases[5]. Some methods use computer vision for the task, which

requires a camera to collect video or image data[6]. Although these methods can

detect a fall incident quite accurately, some issues caused by these methods can

make implementing them in real-world scenario a challenge. The issues faced while

implementing solutions based on these methods are:

1
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• A wearable device can be perceived as uncomfortable, causing unwillingness

to use them.

• Remembering to wear a device every day can be an issue for elderly people.

• A wearable device is more prone to wear and tear than a stationary device.

• A camera-based solution can be both computationally and monetarily ex-

pensive.

• A camera-based solution cannot provide reliability in adverse lighting con-

ditions.

Comfort is of utmost importance for the elderly and the sick. A user might be

understandably unwilling to wear a device if it is uncomfortable for them. Even

if a system is perfectly capable of performing its assigned task, implementing

it is challenging, if not impossible when the users are not willing to cooperate.

Also to have a widespread application of a system, cost and durability have to

be considered, especially in developing countries. So, in this project, we aim to

create a non-contact fall detection system using wifi channel state information that

is more comfortable, more reliable, and less costly.

1.2 Objectives

We aim to build a non-contact fall detection system for monitoring the elderly and

the sick. The objectives we aim to achieve are as follows:

• Implementing a system that can detect if a person in its area of operation

has fallen down

• Ensuring comfort by eliminating the need for wearing any device

• Creating a dataset of channel state information recorded during different

activities including fall

• Recognition of different human activities using Wi-Fi channel state informa-

tion to facilitate future improvement opportunities
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• Implementing a system to detect if the area of operation is empty

• Ensuring that the system is easy to deploy and affordable by using embedded

devices



CHAPTER 2

RELATED WORKS

2.1 Device Free Human Activity Recognition using WiFi

Channel State Information

In this study [7], the authors implemented an activity detection system using

wifi channel state information. They were able to detect human activities like

Walk, Stand, Sit, Run, etc. in a Line of Sight scenario (LOS) and a Non-Line

of Sight (N-LOS) scenario within an indoor environment. They used two algo-

rithms for classification, Support Vector Machine (SVM) and Long Short-Term

Memory (LSTM) recurrent neural network. To collect the data, they used Intel

WiFi Link 5300 Network Interface Card (NIC). This card supports the 802.11n

standard and hence makes it possible to record channel state information. There

are 64 subcarriers in 20 MHz channel and 128 subcarriers in 40 MHz channel. Two

Lenovo laptops were used which were equipped with Intel WiFi Link 5300 Network

Interface Card (NIC). The operating system on said laptops was 64 Bit Ubuntu

version 14.04 LTS. The kernel version was 4.2.0-42. They modified the hardware

using instructions provided by Halperin et al. [8] who proposed the ‘Linux 802.11n

CSI Tool”. For classification with SVM, they performed preprocessing and feature

extraction using Discrete Wavelet Transform (DWT), Principal Component Anal-

ysis (PCA), etc, and then used the classifier. For classification with LSTM, only

CSI-extraction and denoising were done. They achieved results where precision,

recall, and F1 score were 95, 98, and 96 respectively for their best model.

4
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Figure 2.1: Confusion matrices in the paper

There are some limitations in this method:

• The hardware used for the experiment was two laptops, making this solution

impractical for use in a real-world scenario.

• The system shows lower accuracy in detecting activities involving slow move-

ment, like sitting or walking.

• The system does not generalize for different environments.
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2.2 Wi-Motion: A Robust Human Activity Recognition Us-

ing WiFi Signals

This study [9]proposes a wifi-based human activity recognition system, Wi-Motion.

The authors were able to classify five different pre-defined activities with impres-

sive accuracy. The system showed a 96% accuracy in line of sight arrangement

and 92% accuracy in non-line of sight arrangement. Furthermore, the authors

evaluate the effect of the age of the experimental subjects and relatively complex

environments. Wi-Motion jointly leverages the amplitude and phase information

extracted from the CSI sequence. The authors first construct the classifiers using

amplitude and phase, respectively. The output of classifiers is then combined by

a posterior probability-based combination strategy. The authors used a commer-

cial Tp-Link wireless router as the transmitter operating in the IEEE 802.11n AP

mode at 2.4GHz. An Acer Aspire EC laptop running Ubuntu 14.04 was used as

a receiver, which is equipped with an off-the-shelf Intel 5300 card (three anten-

nas) and a modified firmware. During the process of receiving WiFi signals, the

receiver pings the router 33 pkts/s and records the CSI of each packet. For each

activity in different environments, every user provides 30 instances to evaluate the

performance of their system. Two complex office environments were selected for

data collection and 6 participants provided the data. They extracted amplitude

features using DWT (Discrete Wavelet Transform). The phase feature extraction

is done using WMA method and PCA. The authors use a support vector machine

(SVM) algorithm for the classification of the five activities:

1. Bend

2. Halve squat

3. Step

4. Stretch leg

5. Jump

The authors also showed that the system provided accuracy higher than 80% even

when there were multiple users present. Moreover, they showed with their analysis
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that during the process of data collection, the physiological function of the person

decays as the age increases, which makes the movement slower and difficult to

control in a stable situation.

Figure 2.2: System structure for Wi-Motion
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Figure 2.3: Environment set of data collection.

Limitations:

• The hardware used for the experiment were two laptops, making this solution

impractical for use in a real-world scenerio.

2.3 MultiSense: Enabling Multi-person Respiration Sensing

with Commodity WiFi

The study [10] proposes Multisense, a WiFi-based system that can continuously

sense the detailed respiration patterns of multiple persons. It can provide a robust

performance even if they have very similar respiration rates and are physically

closely located. The main contributions of the paper are as follows:

• The authors offered a novel method for canceling out the time-varying phase

offset of WiFi CSI without distorting the linear mixture.

• They showed that respiration sensing can be treated as a BSS problem that

the ICA approach can efficiently address.

• They put MultiSense on common WiFi devices and ran comprehensive tests

to see how well it works.
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The authors collected CSI data using the CSI tool [11], which reports the complex-

valued CSI samples for each received packet and can be used to collect CSI data

from the receiver. For reporting CSI, the Intel 5300 WiFi card in the receiver is

set to run at 5.24 GHz with a sample rate of 200 Hz and provides CSI information

on 30 sub-carriers. The transmitter and receiver are both equipped with three

antennas unless otherwise noted.

Figure 2.4: The experimental setup in two scenarios: (a) all subjects sleep on

a bed in the bedroom; (b) each subject sits on a couch or chair in the living

room.

The authors used ICA (Independent Component Analysis) to separate the breath-

ing patterns of different persons. The added time-varying phase offset (t) and

background static signals affect CSI from commodity WiFi. As a result, using

raw CSI retrieved from commodity WiFi equipment, the authors were unable to

use ICA to distinguish multi-person respiration signals. To overcome this, they

proposed a novel method where they canceled the time-variant phase offset and

removed the background static signal. Even in the presence of four people and only

a pair of Wi-Fi transceivers, MultiSense is quite accurate, with a mean absolute

respiration rate inaccuracy of 0.73 bpm.
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Figure 2.5: The MultiSense system overview.

Limitations:

• When performing blind source separation using ICA method, the number of

persons is required as the input as an inherent characteristic of ICA is that

it cannot identify the actual number of source signals in general.

• The system is not able to assign the breathing patterns to users in the case

of multiple persons.

2.4 A Wireless-Vision Dataset for Privacy Preserving Hu-

man Activity Recognition

This study [12] proposes a newWiFi-based and video-based neural network (WiNN)

to improve the robustness of activity recognition where the synchronized video

serves as the supplement for the wireless data. In three different visual circum-

stances, including scenes without occlusion, partial occlusion, and full occlusion,

a wireless-vision benchmark (WiVi) is gathered for 9 class actions recognition.

The accuracy of the data set is verified using both machine learning methods -

support vector machine (SVM) and deep learning methods. The authors show

that the WiVi data set meets the primary demand and that all three branches

of the proposed pipeline maintain accuracy of more than 80% for multiple action

segmentation from 1s to 3s.
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Figure 2.6: The flowchart of the network for WiVi dataset.

The contribution of the paper can be summarized by the following points:

• To test the effectiveness of existing activity identification systems, the au-

thors first created WiVi, a wireless-vision activity data set. To verify the

WiVi dataset’s effectiveness, they used SVM, Convolutional Neural Networks

(CNN), and WiNN.

• The authors proposed the WiNN, a WiFi-based and video-based neural net-

work for activity recognition in partial and full occlusion scenarios, which

improves the robustness of activity recognition using synchronous video as

a supplement and complement to WiFi CSI signals.

• To verify the quality of the WiVi data set, the authors compared the machine

learning method SVM with the deep learning methods CNN and WiNN.

WiNN, in particular, delivered the most reliable results for multiple action

segmentation from 1 to 3 seconds.
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Figure 2.7: The visual skeleton result of the CSI in two scenarios, where A-G

are without occlusion scene, and H-M are partial occlusion scene.

Limitations:

• The number of participants was very small.

• The baseline SVMmodel performed better than their proposedWiNNmodel.



CHAPTER 3

THEORETICAL OVERVIEW

This chapter provides a theoretical overview of the project as well as specifications

for different hardware tools and technologies that are employed.

3.1 Hardware Specification

We use two esp32(ESP-WROOM32) microcontrollers one as a transmitter, and

one as a receiver. The features of the device are given below [13]:

1 Processors

1a) CPU: Xtensa dual-core (or single-core) 32-bit LX6 microprocessor, oper-

ating at 160 or 240 MHz and performing at up to 600 DMIPS

1b) Ultra-low power (ULP) co-processor

2 Memory: 320 KiB RAM, 448 KiB ROM

3 Wireless connectivity:

3a) Wi-Fi: 802.11 b/g/n

3b) Bluetooth: v4.2 BR/EDR and BLE (shares the radio with Wi-Fi)

4 Peripheral interfaces:

13
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4a) 34 × programmable GPIOs

4b) 12-bit SAR ADC up to 18 channels

4c) 2 × 8-bit DACs

4d) 10 × touch sensors (capacitive sensing GPIOs)

4e) 4 × SPI

4f) 2 × I²S interfaces

4g) 2 × I²C interfaces

4h) 3 × UART

4i) SD/SDIO/CE-ATA/MMC/eMMC host controller

4j) SDIO/SPI slave controller

4k) Ethernet MAC interface with dedicated DMA and planned IEEE 1588

Precision Time Protocol support[4]

4l) CAN bus 2.0

4m) Infrared remote controller (TX/RX, up to 8 channels)

4n) Motor PWM

4o) LED PWM (up to 16 channels)

4p) Hall effect sensor

4q) Ultra low power analog preamplifier Security: IEEE 802.11 standard se-

curity features all supported, including WPA, WPA2, WPA3 (depending on ver-

sion)[5] and WLAN Authentication and Privacy Infrastructure (WAPI)

4q)0.0.1. Secure boot

4r) Flash encryption

4s) 1024-bit OTP, up to 768-bit for customers
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4t) Cryptographic hardware acceleration: AES, SHA-2, RSA, elliptic curve

cryptography (ECC), random number generator (RNG) Power management:

4t)1. Internal low-dropout regulator

4u) Individual power domain for RTC

4v) 5 µA deep sleep current

4w) Wake up from GPIO interrupt, timer, ADC measurements, capacitive

touch sensor interrupt

Figure 3.1: A esp32 microcontroller
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Figure 3.2: Pinout diagram of esp32 microcontroller

The signal specification for esp32 microconroller is given below:

• Bandwidth: 20 MHz

• Antenna: 1 RX and 1 TX

• Protocol: 802.11n

• Modulation: OFDM (16 QAM)

• Subcarrier Number: 64

• Sampling Rate: 3.9 Hz

• Average RSSI: -77 dBm

• Guard Interval: 800 ns (MCS Index: 4)

• Technologies: MIMO, Frame Aggregation

The advantages of using esp32 are:

• esp32 can function as a stand-alone system or as a slave device to a host

MCU, eliminating communication stack overhead on the primary application

CPU.
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• Through its SPI / SDIO or I2C / UART interfaces, the esp32 may commu-

nicate with other systems to provide Wi-Fi and Bluetooth capability.

• esp32 has a low-power processor designed for mobile devices, wearable elec-

tronics, and IoT applications. It uses a combination of proprietary software

to achieve ultra-low power consumption.

• esp32 is highly-integrated with in-built antenna switches, RF balun, power

amplifier, low-noise receive amplifier, filters, and power management mod-

ules.

In summary, esp32 is ideal for our project because is a power-efficient device that

is capable of using wifi communication, is easily integrable with other systems,

and has a fair amount of computing power.

3.2 Wi-Fi

In this project, we exploited the capability of Wi-Fi technology to implement fall

detection. Wi-Fi, vastly used in high-speed internet access and wireless communi-

cation, is a set of protocols governed by IEEE 802.11 standards [14]. IEEE 802.11

is part of the local area network (LAN) technical standards and specifies the set

of protocols for implementing wireless local area network (WLAN) computer com-

munication. These standards are maintained by the Institute of Electrical and

Electronics Engineers (IEEE). Though the first edition of these standards was

released in 1997, continuous development is being made and new standards are

coming with more capabilities to meet the ever-increasing demand for high-speed

wireless communication. The most notable standards of IEEE 802.11 are 802.11a,

802.11b, 802.11g, 802.11n, 802.11ac, and 802.11ax.

3.2.1 802.11a

This was the first standard to use the 5 GHz band for Wi-Fi which might seem

to be ahead of its time. But because of the higher frequency, its coverage area
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was much lower than the traditional 2.4 GHz band and suffered much from in-

terference problem. That is why 802.11a was not so popular compared to its 2.4

GHz counterpart even though it had a higher data rate and went obsolete quickly.

But the main contribution of this standard was the introduction of Orthogonal

Frequency-Division Multiplexing (OFDM) which improved the data transmission

drastically. OFDM is based on the concept of orthogonal subcarriers with minimal

interference that makes it possible to cope with severe channel conditions without

complex equalization filters. OFDM is described in detail later in this section.

802.11a uses 52 subcarriers in OFDM, of which 48 subcarriers are used for data

transmission and the rest 4 subcarriers are used as pilot subcarriers.

3.2.2 802.11b

802.11b was the first widely accepted standard of Wi-Fi. Both 802.11a and 802.11b

were released in 1999, with a major difference between them. Unlike 802.11a,

802.11b uses 2.4 GHz band. The 2.4 GHz band was not as crowded as today

and offered higher coverage and the capability to withstand interference. These

advantages made 802.11b popular despite having a much lower data rate (up to

5.5 Mbit/s). This standard is still in use in some legacy devices.

3.2.3 802.11g

Introduced in 2003, 802.11g was a mixture of the previous two standards. It

operated in the 2.4 GHz band like 802.11b and utilizes the same OFDM-based

transmission scheme as 802.11a. This technical change gave a burst increase in

the data rate which could go up to 54 Mbit/s. 802.11g also uses a total of 52

subcarriers with a carrier separation of 0.3125 MHz. There are 14 partially over-

lapping channels each of which has a separation of 20 or 25 MHz.
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3.2.4 802.11n

This standard is also known as Wi-Fi Generation 4 (Wi-Fi 4). It includes several

new technologies that increased the capability of Wi-Fi further. The most notable

additions to this standard are:

• Multiple Input Multiple Output (MIMO)

• Frame aggregation

• WiFi Beamforming (Optional)

• 40 MHz channel bandwidth

• Security enhancement

MIMO technology is capable of conducting simultaneous data transmission over

multiple antennas. Frame aggregation allows sending two or more frames in a

single transmission. Beamforming improves the user experience by focusing the

Wi-Fi beams in the user’s direction. Thus these new features along with OFDM

increased the data rate from 72 Mbit/s to 600 Mvit/s. 802.11n has support for

the 2.4 GHz band and optionally for the 5 GHz band. Most Wi-Fi-enabled devices

are still using this standard today.

3.2.5 Newer standards

After 802.11n, a few major standards have come out that have increased the data

rate, reliability, and security further. 802.11ac (Wi-Fi 5) is currently spreading

in the consumer community which uses only the 5 GHz band. It introduced a

few new features, such as Multi-User MIMO (MU-MIMO), wider 80 MHz and 160

MHz channels, and Beamforming.

802.11ax (Wi-Fi 6E) is the most recently approved standard adopted in 202 which

uses three bands: 2.4 GHz, 5 GHz, and 6 GHz. The data rate can vary from 600

Mbit/s to 9608 Mbit/s. Currently, the development is being made for 802.11be

standard or Wi-Fi 7 which will provide even more data rate.
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The hardware used in our proposed method, esp32 uses the popular IEEE 802.11n

standard. It currently has the largest user base and can utilize several recent

technologies including OFDM, MIMO, and frame aggregation.

3.2.6 OFDM

Orthogonal Frequency-Division Multiplexing (OFDM) is a sort of digital transmis-

sion and a way of encoding digital data on multiple carrier frequencies that is used

in telecommunications. OFDM is a widely used wideband digital communication

technique, with applications including digital television and audio broadcasting,

DSL internet access, wireless networks, power line networks, and 4G/5G mobile

communications.[15] The capacity of OFDM to cope with severe channel condi-

tions without the use of sophisticated equalization filters is its fundamental benefit

over single-carrier methods. Because OFDM uses numerous slowly modulated nar-

rowband signals rather than a single rapidly modulated wideband signal, channel

equalization is simpler. This mechanism also makes it easier to design single fre-

quency networks (SFNs), in which multiple adjacent transmitters send the same

signal at the same frequency at the same time, because the signals from multiple

distant transmitters can be constructively recombined, avoiding the interference

that a traditional single-carrier system would face.

Figure 3.3: Block Diagram of Simplified OFDM System
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3.2.7 MIMO

Multiple-Input MIMO (Many-Input, Multiple-Output) is a wireless technology

that uses multiple transmitters and receivers to carry more data at once. MIMO

is supported by all 802.11n wireless equipment. The technology enables 802.11n to

achieve faster rates than goods that do not have 802.11n.[16] MIMO must be sup-

ported by the station (mobile device) or the access point (AP) to be implemented.

Both the station and the access point must support MIMO for the best perfor-

mance and range. Multipath, a natural radio-wave phenomenon, is used in MIMO

technology. Multipath occurs when transmitted data bounces off walls, ceilings,

and other obstacles, arriving at the receiving antenna numerous times at slightly

varying angles and times. Multipath created interference and hindered wireless

communications in the past. MIMO technology with multipath combines numer-

ous, smart transmitters and receivers with an extra spatial dimension to improve

performance and range. By allowing antennas to mix data streams arriving from

diverse paths and at different times, MIMO boosts the signal-capturing power of

receivers. Smart antennas make use of spatial diversity technology, which makes

use of unused antennas. When the number of antennas outnumbers the number

of spatial streams, the antennas can boost receiver variety and range.[17]
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Figure 3.4: Block Diagram of MIMO System

3.3 Signals used for analysis

Activity recognition using Wi-Fi data is not a completely new domain. Older

methods of human activity recognition used Received Signal Strength Indication

(RSSI) signal. But recently with the development in WLAN fields, newer stan-

dards starting from 802.11g can provide Channel State Information (CSI) signal

too. In our proposed method, we utilized both signals to classify human activity

more accurately. Here is an overview of these signals.

3.3.1 RSSI

The RSSI is a measurement of the signal’s power at the moment it reaches the

receiver. Signal energy diminishes with distance, according to signal propagation

models and experiments. As a result, RSSI is frequently used in conjunction with

multilateration algorithms to estimate position. When impediments are present
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in the region of interest, RSSI suffers from several drawbacks. RSSI values are

distributed randomly and its correlation with the distance is not strong due to

Multipath and shadowing fading effects. RSSI values are comparatively coarse

information which is the result of averaging the amplitudes of all incoming signals

to the receiver. These drawbacks lead to poor localization performance using RSSI

[18]. This problem can be solved by using rich channel information from different

subcarriers.

3.3.2 CSI

In IEEE 802.11 a/g/n/ac/ax networks, data transmission and reception is done

using OFDM. As discussed earlier, OFDM uses a number of orthogonal subcarriers

to transmit data in multiple spatial paths. While a transmitting packet is in the

medium, it is subjected to different obstructions, such as, fading, scattering and

power loss. As the subcarriers follow different spatial paths, these obstructions

affect each subcarrier differently. Thus this physical layer information specific to

each subcarrier is known as Channel State Information (CSI). CSI is an overall de-

piction of the channel state that includes scattering, fading, and multipath effects

in the signal’s propagation. In contrast to the received power strength provided

by RSSI, CSI statistics provide more information about the channel degradation

effects that the signal suffers due to its granularity of sub-carrier frequencies and

vector representation. Data is sent using MIMO and OFDM systems.

In narrow-band flat fading channel, a MIMO system is represented by:

yi = Hxi +Ni (3.1)

where yi and xi are the received and the transmitted signal vectors respectively,

H denotes the channel matrix which contains the CSI information and Ni is the

noise vector. To estimate the channel matrix H, a known training sequence or the

pilot sequence is transmitted and channel response H is measured at the receiver

side. If the pilot sequence is expressed by x1, x2, x3, ..., xn, the received can be

represented by:

Y = [y1 + y2 + ...+ yn] = HX +N (3.2)
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Thus the channel matric can be determined by:

Ĥ =
Y

X
(3.3)

For any MIMO system of n×m dimension, H can be shown in matrix form:

Hi =


h11 h12 h13 ... h1m

h21 h22 h23 ... h2m

... ... ... ... ...

hn1 hn2 hn3 ... hnm

 (3.4)

where i is the subcarrier index and hnm is a complex number representing the

amplitude and phase information of Channel State Information (CSI).

3.4 Machine Learning

In the 1950s, a branch of artificial intelligence known as machine learning was

discovered and developed. The earliest machine learning techniques date back to

the 1950s, however there have been very few notable studies and advancements in

this field. However, this field of study underwent a resurgence in the 1990s and has

continued to this day. Future advancements in this field of study are expected. The

complexity of analyzing and interpreting the data, which is continually expanding,

is what has led to this development. The foundation of machine learning is the

idea that, with the help of this growing data, the best model for the new data

may be found among the old data. As a result, research into machine learning will

continue along with the growth in data.[19] The actions performed by computers,

which are based on an algorithm and follow specific procedures, have no margin for

error. In some circumstances, computers make judgments based on the current

sample data, which is different from commands that are created to produce an

outcome depending on an input. In some circumstances, computers may err in

their decision-making just like people do. Putting it another way, machine learning

is the process of giving computers the capacity to learn from data and experience

just like a human brain.[20]The primary goal of machine learning is to develop
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models that can learn from previous data to become better, recognize complicated

patterns, and find answers to new problems.[21]

3.4.1 Machine Learning Categories

We can divide machine learning approaches in four categories.They are:

• Supervised Learning

• Unsupervised Learning

• Semi-supervised Learning

• Reinforced Learning

Supervised learning is a technique where the currently available input data is used

to arrive at the outcome set. Classification and regression supervised learning are

the two categories of supervised learning.

1. Classification: Dividing the data into the categories specified in the data set

in accordance with their unique characteristics.

2. Regression: Predicting or drawing conclusions about the other characteris-

tics of the data from the known characteristics.

Unsupervised learning is the technique where the output is not provided while

training the model.The algorithms following this technique can be classified into

two categories:

1. Clustering: When intrinsic groupings in the data are unknown, finding

groups of data that are comparable to one another.

2. Association: Figuring out the links and relationships between the data in

the same data collection.
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Semi-supervised learning is a method of machine learning that, during training,

blends a sizable amount of unlabeled data with a small amount of labeled data.

Between supervised learning (with labeled training data) and unsupervised learn-

ing is semi-supervised learning (with only labeled training data). It is a unique

illustration of poor supervision. Either inductive learning or transductive learning

may be referred to as semi-supervised learning.[22]

Reinforcement learning is the challenge that an agent faces when learning behavior

through trial-and-error interactions with a dynamic environment. Reinforcement

learning differs from supervised learning in that it does not need the presentation

of labeled input/output pairings or the explicit correction of suboptimal behaviors.

Instead, the emphasis is on striking a balance between exploitation and exploration

(of undiscovered territory) (of current knowledge). The benefits of supervised and

RL algorithms can be combined with partially supervised RL algorithms.[23]

3.5 Human Activity Recognition

Human activity recognition is important for interpersonal interactions and human-

to-human communication. It is challenging to extract since it contains details

about a person’s identity, personality, and psychological condition. One of the key

research topics in the fields of computer vision and machine learning is the human

capacity for activity recognition. This research has led to the need for multiple

activity detection systems in numerous applications, such as video surveillance

systems, human-computer interaction, and robotics for characterizing human be-

havior. Most of the work in human activity recognition assumes a figure-centric

scene of an uncluttered background, where the actor is free to perform an activity.

The development of a fully automated human activity recognition system, capable

of classifying a person’s activities with low error, is a challenging task due to prob-

lems, such as background clutter, partial occlusion, changes in scale, viewpoint,

lighting and appearance, and frame resolution.[24]
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To solve these issues, a task is needed that combines three elements: (i) back-

ground subtraction, in which the system tries to distinguish between the fore-

ground’s changing or moving objects and the background’s parts;[25][26] (ii) hu-

man tracking, in which the system tracks a person’s motion over time;[27] and (iii)

human action and object detection, in which the system can localize a person’s

activity.[28]

Figure 3.5: Decomposition of human activities.

3.6 Classification Algorithms

Classification algorithm is a Supervised Learning technique that is used to catego-

rize new observations based on training data. In classification, a program makes

use of the dataset or observations that are provided to learn how to categorize

new observations into various classes or groups. Some algorithms are discussed

here:
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• SVM: Support vector machines (SVMs) are a group of supervised learning

techniques for classifying data, performing regression analysis, and identify-

ing outliers. Support vector machines have the following benefits: efficient in

high-dimensional environments. Still useful in situations where the number

of dimensions exceeds the number of samples.[29]

• Random Forest: A large number of decision trees are built during the train-

ing phase of the random forests or random decision forests ensemble learning

approach, which is used for classification, regression, and other tasks. The

class that the majority of the trees chose is the output of the random for-

est for classification problems. Decision trees tend to overfit their training

set, and random decision forests correct for this. Although they frequently

outperform decision trees, gradient boosted trees are more accurate than

random forests.[30]

• Extra Trees Classifier: In essence, it involves dividing a tree node while

severely randomizing the choice of attribute and cut-point. In the worst

situation, it creates completely random trees, whose architectures are inde-

pendent of the learning sample’s output values. By selecting the right pa-

rameter, the strength of the randomization can be adjusted to the particulars

of the problem. The algorithm’s biggest advantage, aside from accuracy, is

computational speed.[31]

Figure 3.6: Visual Representation of Extra Trees Classifier.

• Artificial Neural Network(ANN): Artificial neural network is based on re-

search into the brain and nervous system, as seen in Fig. 1. Although
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they employ a condensed set of biological brain system ideas, these net-

works mimic biological neural networks. Particularly, ANN models mimic

the electrical activity of the nerve system and brain. Connected to other

processing elements are processing elements (sometimes called neurodes or

perceptrons). The neurodes are typically organized in layers or vectors, with

the output of one layer acting as the input for the following layer and maybe

other layers.[32]

Figure 3.7: Visual Representation of an Artificial Neural Network.



CHAPTER 4

METHODOLOGY

In this chapter, we will discuss the implementation of our proposed system. At

first, we will describe the hardware setup used for collecting user data. Different

aspects of the dataset were mentioned in the next subsection. Later, we discussed

how we extracted, processed, calibrated, and denoised the raw data and made

them usable for our model. Finally, a brief overview of our proposed model and

approach is given.

4.1 Hardware Setup

The main hardware we used for this system is a pair of ESP32 MCU manufac-

tured by espressif. The specific model of the used hardware module is ESP32-

WROOM-32E. This is an ESP32-D0WD-based module with Wi-Fi 802.11 b/g/n

and Bluetooth LE 4.2 connectivity and a dual-core processor. Traditional research

on Wi-Fi-based human activity recognition uses Intel 5300 or Atheros 9390 Net-

work Interface Card (NIC) of a laptop computer [7, 9, 12, 33, 34] which is not

a realistic choice for practical use because each node is a computer. The device

we used is small, low-cost, programmable, and deployment-friendly and the whole

system needs only one computer to process the data.

For our experiment, we need to send CSI data from one ESP32 device to another.

But ESP32 does not transmit CSI data with the initially provided firmware. So, a

30
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customized firmware by Espressif Systems [35] is flashed to the devices to enable

the transmission of CSI data. CSI data can be received using three ways:

1. Get router CSI data: In this process, a router is used to send CSI data to the

ESP32. Firstly, the ESP32 device sends a Ping request to the router with an

empty ICMP packet. The router acknowledges the request by sending a Ping

Replay back to the requesting device. The CSI information is transmitted

with the Ping Replay. One disadvantage of this process is that we need an

extra router device and set it up separately to send CSI data.

Figure 4.1: Get CSI data of the router

2. Get device CSI data using router: To implement this method, we need two

ESP32 devices. ESP32 A and B both send Ping packets to the router, and

ESP32 A receives the CSI information carried in the Ping Replay returned

by ESP32 B. In this method, the CSI data is passed from ESP32 A to ESP32

B using an intermediate router. This intermediate connection may reduce

the packet receiving rate of the system.
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Figure 4.2: Get CSI data between devices using a router

3. Get device CSI data using broadcasting: In this method, one ESP32 device

acts as a transmitting device and all other devices are receiving device. The

transmitting ESP32 A sends CSI data using broadcasting. This method has

the highest detection accuracy and reliability and does not require any router

device.
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Figure 4.3: Get CSI data using a broadcasting ESP32

As we focus on reliability and accuracy, we choose the third method by making

one ESP32 device a broadcaster and the other a receiver. We added an extra

layer of security by specifying the Media Access Control (MAC) address of the

receiving ESP32. As a result, if the receiving device is in the coverage area of the

transmitting device, it gets CSI data automatically from the transmitting device.

No overhead is required here.
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Figure 4.4: ESP32 devices used in the project

Each ESP32-WROOM-32E module has one built-in PCB antenna that can trans-

mit or receive data. It is also possible to connect any external antenna with 50

Ω resistance. In this experiment, we restricted our study to the built-in PCB

antenna. We used two ESP32 modules placed approximately 3.5 meters apart.

One of them is used as a transmitting device connected to any power source, and

the other as a receiving device connected to a computer to process the data and

predict the activity. The space between the devices is kept empty for ensuring

the Line-of-Sight (LoS). The subjects are instructed to do the activities in the 3.5

meters × 3.5 meter area between the transmitting and receiving devices. Because

of the movement of the subject, the transmitting packets face multipath fading,

scattering, reflection, and power loss. The Channel State Information (CSI) of

each packet can be analyzed to find patterns between the transmitting packets

using machine learning algorithms and thus recognize the activity performed by

the subject.
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Figure 4.5: Data Collection Setup and Data Collection Example

ESP32-WROOM-32E supports Wi-Fi 802.11 b/g/n standards. For our experi-

ment, we used 802.11n standard that provides support for OFDM, MIMO, frame

aggregation, and higher data rate. But ESP32 does not support 5 GHz band and

only works with 2.4 GHz band. The ESP32 devices we used in this experiment

are configured to send data according to the following specifications:
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Table 4.1: Customized signal specification of ESP32

Specification Value

Standard IEEE 802.11n

Band 2.4 GHz

Channel 20 MHz

MCS index 0

Guard interval 400 ns

Data rate 7.2 Mbit/s

Modulation BPSK

Sampling rate 100 Hz

Coding rate 1/2

Spatial streams 1

4.2 Dataset Description

The accuracy and effectiveness of any data-driven study depend much on a well-

prepared dataset. But there are only a few open datasets available for activity

recognition using ESP32 CSI data. But these datasets do not have enough data

or provide the activities we need for this system. Hence, we prepared our dataset

using the hardware setup stated in the previous section. Wi-Fi CSI data is very

sensitive to the outside environment which makes it very hard to collect data in the

wild. Even rooms with different arrangements may affect the CSI data differently

which may create a problem if a huge amount of data is not taken. For this project,

we selected a neat and spacious room with minimum furniture and other things to

collect the data. Two ESP32 devices are placed 3.5 meters apart and the activities

are performed by different subjects in the area between the two devices. There are

a total of 5 activities performed by 13 individual subjects. Each activity segment

is recorded for a fixed time window of 4 seconds. This time window is chosen

empirically by the type and complexity of the activities. A total of 966 samples

of such segments are recorded on different calendar days.
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4.2.1 Challenges

ESP32 sends Ping packets with CSI data at a rate of 100 Hz. But due to inter-

ference, unavailability of Line of Sight, and other issues, some packets are lost.

As a result, though ideally each data segment of 4 seconds should have a total of

4× 100 = 400 packets, most of the segments had packets between 300 to 340 due

to packet loss.

Figure 4.6: Distribution of number of packets in all the collected samples

The problem here is, some of the data samples had extremely lower number of

packets that were not usable in the system. So, we discarded 68 data samples

with less than 150 packets. Finally, the remaining 898 data samples were used in

the next steps.
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Figure 4.7: Distribution of number of packets in the selected samples

4.2.2 Activities

There are a total of 5 activities in this dataset: Fall, Stand, Walk, Empty Room

and Presence. Fall, stand and walk activities are performed by one subject for

each sample. For empty room activity, no subject was present in the room. For

presence, a few subjects were present in the room doing various daily activities

including gossiping, taking rest, writing, etc. Every activity excluding the empty

room was done in a different direction and fashion to preserve generality. The

number of samples for each of the activity are not the same and is shown below

in 4.2.

Table 4.2: Number of samples by activity

Activity Number of samples

Fall 224

Stand 100

Walk 133

Empty room 299

Presence 142
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Figure 4.8: Number of samples by activity

Packet size distribution is also different for different types of activities. As sub-

carriers experience a different level of scattering, reflection, or delay for different

types and speeds of movement, packet loss will also be different. For example,

stand activity involves a very small amount of movement, but there should be a

much higher level of movement in fall activity. This difference in movement causes

a difference in packet loss and segment size as illustrated in 4.9.
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Figure 4.9: Packet counts of segments for different activities

4.2.3 Subjects

The number of subjects is an important aspect of any dataset. A higher number

of subjects increase the generalized performance of any system. 13 subjects vol-

untarily performed different activities for this dataset. Most of the subjects have
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performed three different activities and some of them performed two or four ac-

tivities out of five. In total, the subjects performed 20 to 45 segments of different

activities.

Figure 4.10: Number of samples by subject

4.2.4 Dataset Summary

Different aspects of the dataset is summarized in 4.3.
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Table 4.3: Dataset summary

Specification Value

Device used ESP32-WROOM-32E

Signals used CSI, RSSI

Activities 5

Subjects 13

Subject age range 18-25

Total samples 966

Selected samples 898

Sampling rate 100 Hz

Each sample time window 4 seconds

Mean packet count 287

Room temperature 25 ◦ C

4.3 Data Preprocessing Pipeline

The data we collected includes the raw signal information and packets. In this

section, we propose a robust and complex preprocessing pipeline to preprocess the

raw data and make the raw data used for the system. At first, we need to extract

the CSI data from the raw signal and isolate the phase and amplitude information

from it. As CSI data is inherently sensitive to different environmental parame-

ters, some cleaning process needs to be applied such as calibration, denoising, and

dimensionality reduction. There are various denoising algorithms to choose from.

We compare their performances and choose the best one. After preconditioning the

signals, we feed the data to the feature extraction module that extracts different

features from the cleaned data. Not all the features are important for the out-

come. So, we have to use different mathematical models to find the most relevant

features. A normalization technique is employed before handing the data over to

a competent machine learning model. Lastly, we tune different hyperparameters

of the model to increase the performance of the model on the dataset.



Chapter 4. Methodology 43

Figure 4.11: Complete Pipeline of The System

4.3.1 CSI Data Extraction

CSI essentially enables us to comprehend what transpires on the channel between

the transmitter and receiver. CSI is calculated by examining how the preamble

with known content is changed during transmission. Thus, we have a collection

of complex numbers in the form an exp jθn, where an is the amplitude and θn is

the phase. We need to extract this amplitude and phase from the raw CSI data.

A raw CSI packet comprises the real and imaginary part of the channel state
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and is transmitted separately for each subcarrier. But not all subcarriers carry

useful information. Different subcarriers respond differently to human activity;

for example, certain subcarriers are quite sensitive to motion and exhibit obvious

fluctuations. It is preferable to use only the CSI information from these sensitive

subcarriers. The computing complexity of the system is also increased by using

all of the data from all of the subcarriers. So, we removed some of the irrelevant

subcarriers by examining the acquired CSI sequence, and skillfully isolate the

signal segments mostly corresponding to human activity. Then we transformed

the real and imaginary parts of the selected subcarriers into polar form to get the

required amplitude and phase information.

4.3.2 Time Series Representation

The extracted CSI data ideally should be a time series having a constant time

difference between two samples. But in practice, the sampling rate was not con-

stant and there was a considerable amount of packet loss which led to non-uniform

data. To apply different time and frequency domain analysis, this data need to

convert to a time series representation. That’s why we resampled the data at a

constant 100 Hz sampling rate. This process involves resulting in some missing

values which are linearly interpolated to generate an equivalent waveform.
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Figure 4.12: Resampling for time series representation

4.3.3 Phase Signal Analysis

The isolated phase information of ith subcarrier can be expressed by the following

equation:

ϕ̂i = ϕi − 2π
si
N
τ + β + Z (4.1)

Here, ϕi is the actual phase which is deteriorating by the time offset at receiver τ ,

unknown time offset β, and measurement error Z. si is the subcarrier index and

N signifies the Fast Fourier Transform (FFT) size which is 64 for IEEE 802.11n.

Due to this distortion, the phase must be calibrated the restore the actual phase
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as much as possible. As shown by [36], the time offsets, τ , and β can be removed

by considering the phase across the frequency band given by the equation:

ϕ̂i = ϕ̂i − asi − b = ϕ̂i −
ϕn − ϕ1

sn − s1
si −

1

n

n∑
j=1

ϕj (4.2)

Here, a and b are intermediate variables. But in this process, the true phase is

folded due to the recurrence characteristic of the phase. This problem can be

solved by compensating multiple 2π’s by judging whether the measured phase

change between the adjacent subcarriers is greater than the given thresholds [37].

4.3.4 Denoising Amplitude Signal

The amplitude of the CSI data is very sensitive to internal and external noises.

Possible noise sources are scattering, reflection, delay, fading, and power line losses.

The signal can be denoised by using various techniques including different filters

or transformations.
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Figure 4.13: Raw CSI amplitude signal for different activities

4.3.4.1 Low Pass Filter (LPF)

A low-pass filter is a filter that attenuates the higher frequency portion of a signal

than a chosen cutoff frequency. The filter’s precise frequency response is deter-

mined by the filter’s design. There are many types of low pass filters, but in this

project, we will focus on a specific type named Butterworth filter [38]. Butter-

worth filter is a signal processing filter made to have a frequency response that

is as flat as possible in the passband. Butterworth filter has a slower roll-off and

thus will require a higher order to implement a particular stopband specification,

but it has a more linear phase response in the passband than most others. Low

pass butterworth filters are greatly used for noise removal from various signals.

Generally, a noisy wave contains two different portions: high-frequency noise and

low-frequency true signal. This also fits for CSI amplitude signal. Thus the high-

frequency noise mixed in the signal can be removed by using a Butterworth low
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pass filter. But a problem with this method arises when the signal and noise fre-

quency are not separated by a large margin. As butterworth filter has a slower

roll-off, it tends to attenuate some of the original signals too.

4.3.4.2 Fast Fourier Transform (FFT)

A fast Fourier transform (FFT) algorithm calculates a sequence’s discrete Fourier

transform (DFT) or its inverse (IDFT). Through the process of Fourier analysis, a

signal is transformed from its original domain, which is frequently time or space, to

a representation in the frequency domain, and vice versa. The DFT is produced

by breaking down a series of numbers into components of various frequencies.

[1] Although computing it straight from the specification is generally too time-

consuming to be helpful, this technique has many applications. Such changes are

quickly computed by an FFT by factorizing the DFT matrix into a product of

sparse (mostly zero) elements.[39] This successfully reduces the complexity from

O(N2) to O(Nlog(N)) where N is the number of samples.

4.3.4.3 Short-Time Fourier Transform (STFP)

A Fourier-related transform known as the Short-time Fourier transform (STFT)

is used to ascertain the sinusoidal frequency and phase content of local parts of

a signal as they change over time. To compute STFTs, it is necessary to split a

longer temporal signal into equal-length shorter segments. Each shorter segment

is then subjected to a separate Fourier transform computation. This makes each

shorter segment’s Fourier spectrum visible. The shifting spectra are then typically

plotted as a function of time using a technique called a spectrogram or waterfall

plot, which is frequently applied in Software Defined Radio (SDR)-based spectrum

displays. On desktop PCs, Fast Fourier Transforms (FFTs) with 224 points are

frequently used for full bandwidth displays that span the whole SDR range.[40]
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4.3.4.4 Wavelet Transform (WT)

In Fourier transform (FT), we represent a function using a series of sine and cosine

waves, which is an excellent approach to understanding the frequencies present in

the signal. However, it has a significant drawback. FT only contains the frequency

information, but the spatial or temporal information is completely lost. It will

not be possible to tell where the frequency is low or high in the space or time

domain, or where frequency shifts are taking place. To overcome this problem,

we do Wavelet Transform (WT). In WT, we represent a function using a certain

orthonormal series produced by a wavelet. A wavelet is a waveform of effectively

limited duration that has an average value of zero and nonzero norm. If a function

ϕ can provide a Hilbert basis or a full orthonormal system, for the Hilbert space

of square-integrable functions, then ϕ is referred to as an orthonormal wavelet.

The fundamental principle of wavelet transform is that they should only be able

to modify the length of time, not shape. This is impacted by selecting appropriate

base functions that support this. Changes to the time extension should match up

with the analysis frequency of the basis function.

4.3.4.5 Discrete Wavelet Transform (DWT)

A discrete wavelet transform (DWT) [41] decomposes an input signal into several

sets, each set consisting of a time series of coefficients that describe the signal’s

temporal evolution in the associated frequency band. In this process, the wavelets

are sampled in discrete steps. A key advantage it has over Fourier transforms is

temporal resolution: it can show both frequency and location information (location

in time). The DWT refers not just to a single transform, but rather to a set of

transforms, each with a different set of wavelet basis functions. Two of the most

common are the Haar wavelets and the Daubechies set of wavelets. Unlike the

Continuous Wavelet Transform (CWT), it uses a finite set of wavelets, i.e., defined

at a particular set of scales and locations. But the main idea remains the same;

we multiply the signal with a particular wavelet with a particular scaling and then

shift it over the whole signal to integrate. In DWT, we repeat the procedure after

changing the scale. In these situations, scaling adjustments are made discretely.
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The DWT can be defined by the following equation:

Tm,n =

∫ ∞

−∞
x(t)ψm,n(t)dt (4.3)

where ψ is the wavelet function. The components of the signal can be assembled

back into the original signal without loss of information using a reconstruction

algorithm known as the Inverse Discrete Wavelet Transform (IDWT). In IDWT,

the DWT coefficients are first upsampled by inserting zeros between each coeffi-

cient, essentially doubling the length of each (the approximation and the detail

coefficients are handled separately). The reconstruction scaling filter for approxi-

mation coefficients and the reconstruction wavelet filter for detail coefficients are

then convolved with these. To get the original signal, these results are then put

together.

4.3.4.6 Comparison of DWT and LPF

For our dataset, we employed two different types of denoising methods. One is a

4th order Butterworth low pass filter with a cut-off frequency of 10 Hz. The other

is a second-level Discrete Wavelet Transform using symlet10 wavelet.

Figure 4.14: Symlet10 wavelet
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We used both denoisers and compared how they work on different CSI amplitude

waves. By careful comparison, we found the DWT denoising method performed

better than low pass filter. So, we chose DWT denoising for this system.

Figure 4.15: Comparison between low pass filter and DWT

4.4 Feature Selection

After conditioning and denoising the signals, we extracted some statistical features

including min, max, median, and standard deviation from the phase and amplitude

CSI and RSSI signals. But the initial feature size was 716 which is very large
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considering the sample size which is only 898. So, we needed to prune the feature

set to remove non-correlated features. There are different ways to measure the

correlation or importance of the features with the output variable.

4.4.1 Chi-Square Test [1]

One technique to demonstrate a connection between two categorical variables is via

a chi-square statistic. The chi-squared statistic is a single figure that indicates the

degree to which the counts you saw deviate from the counts you would anticipate

if there were no association at all in the population.

χ2
c =

∑ (Oi − Ei)
2

Ei

(4.4)

4.4.2 Pearson’s Correlation Coefficient (PCC) [2]

Pearson’s correlation coefficient is the test statistics that assess the statistical

association, or relationship, between two continuous variables. Because it is based

on the method of covariance, it is regarded as the best method for determining

the relationship between variables of interest. It provides details on the size of the

association or correlation as well as the relationship direction. One problem with

PCC is that it is not able to tell the difference between dependent variables and

independent variables.

4.4.3 Decision Tree (DT) based feature selection [3]

Decision tree building algorithm selects the splits locally, i.e. concerning the splits

selected in earlier stages, so that the features occurring in the decision tree, are

complementary. Thus, Decision Tree based models provide feature importance

metrics that can be utilized to select the most important features.

We used a combination of PCC and decision tree-based selection methods to select

the most important 243 features for our proposed method.
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4.5 Training Description

Every supervised machine learning system has three phases:

1. Training phase: We train the data for the known labels.

2. Testing phase: We evaluate the performance of the trained model keeping

the labels away from the model.

3. Application phase: We apply our model for real-life unknown data.

Our proposed preprocessing pipeline is independent of the training phase. So, it

gives us the advantage to use any machine learning model for our preprocessed data

even for different learning tasks. In this project, we have two different learning

objectives. One is fall detection and the other one is a generalized human activity

recognition.

4.5.1 Fall Detection

For fall detection, we classified the walk and stand activities as non-fall activity,

kept the fall activity as is and did not use the empty room and presence activities.

Then, we trained binary classification algorithms on this data.

4.5.2 Human Activity Recognition

In this objective, we utilized the whole dataset with all the activities, i.e., fall,

stand, walk, empty room and presence. So, we have five labels in this task and

used this data in different multi-class classification algorithms.

In both cases, we compared the behavior and performance of these algorithms

and tuned them to get the best performance on the test set. The performance

statistics of these models are depicted in the next chapter.



CHAPTER 5

RESULT AND ANALYSIS

In this chapter, we aim to discuss the results of our implementation and analyze

its performance in various scenarios and test setups.

5.1 Evaluation Metrics

Classification Accuracy: Classification Accuracy is what we usually mean by the

term accuracy. It is the highest used metric for classification tasks which works

best when the number of samples belonging to each class is nearly equal. But,

it does not convey any useful information when the dataset is imbalanced. For

example, if any dataset has two classes: class A, and B, and 98% of the dataset

belongs to class A, blindly predicting each of the samples as class A will give an

accuracy of 98% which is misleading. Hence, this metric is only used in balanced

datasets.

Accuracy =
# correct predictions

# all samples
(5.1)

Precision:

precision is a measure of result relevancy, it calculates how many positive predic-

tions are correct. It focuses on the correctness of positive detection which can be a

good metric for cases where a false positive can be more troublesome than a false

negative.

54
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Precision =
TP

FP + TP

Recall: Unlike precision, Recall focuses on correctly identifying True Positives out

of all the positive samples. It can be referred to it as Sensitivity or True Positive

Rate. It is a good metric where false negatives are more troublesome, such as in

disease detection.

Recall =
TP

FP + FN

F1 Score: It is a metric combination of both the Precision and Recall scores. It lets

us do a tradeoff between Precision and Recall. A good F1 score is the indication

of both good Recall and good Precision. That is why F1 score is considered one of

the most important metrics to evaluate the performance of a classification system.

F1 Score = 2 ∗ Precision ∗Recall
Precision+Recall

Area Under Curve (AUC): It is also known as AUC-ROC which signifies the area

under the Receiver Operating Characteristic (ROC) curve. The ROC curve is an

evaluation metric initially proposed for binary classification problems. In essence,

it separates the ”signal” from the ”noise” by plotting the TPR against the FPR

at different threshold values. The higher the AUC, the model is considered to

perform better. In general, the ROC is for many different levels of thresholds and

thus it has many F score values. F1 score is applicable for any particular point on

the ROC curve.
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Figure 5.1: Area Under Curve of Receiver Operating Characteristic (AUC-

ROC)

5.2 Testing Setups

The prerequisite for building a good machine learning model is to validate its

performance of it against unknown data. If not, the model may overfit on the

given dataset and perform worse in the actual application where we test the model

on real-life unknown data. To do so, we generally split the dataset into some sets

which are typically known as training set, testing set and so on. The model should

not only work well on the training data but also give an accurate prediction on

an unknown dataset. To evaluate how well the model is performing on unknown

dataset, we employ different splitting techniques for better generalization.
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5.2.1 Train-test Split

This is the most common type of the data splitting methods. In this method, we

generally divide the dataset into two mutually exclusive sets. One is training set

which is used to train the model and includes all the known labels. Another is

testing set in which we hide the labels from the model and evaluate how does the

model perform on unknown data. The split ratio is a term that defines how much

data are in the training set and testing set. A split ratio of 75% means 75% of the

total data are kept in training set and the rest 25% data are in testing set. The

split ratio is typically chosen between 60% to 80%, but a split ratio outside this

range may be picked depending on the dataset. Generally, the split ratio keeps

increasing with the dataset size.

Figure 5.2: Train-test split

5.2.2 Train-validation-test Split

Sometimes the dataset is divided into three sets instead of two, adding another

set known as validation set. This splitting technique is called train-validation-

test split. In such a case, the data is first trained on training set and validated

on the validation set to evaluate the performance. The model that has the best

performance on the validation set is chosen and is tested on the testing set to

obtain the actual performance of the model.
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Figure 5.3: Train-validation-test split

5.2.3 K-fold Cross Validation

Cross-validation is a statistical splitting method used to estimate the skill of ma-

chine learning models. The procedure has a single parameter called k which sig-

nifies how many splits will be made. When a particular number for k is selected,

it may be substituted for k in the model’s reference, such as when k=10 is used

to refer to 10-fold cross-validation. The general procedure of this method is given

below:

1. Randomly shuffle the dataset.

2. Create k groups from the dataset.

3. For every distinct group:

(a) The group should be used as a holdout or test data set.

(b) Use the remaining groupings as the training data set.

(c) Fit the model to the training data, then assess it against the test data.

4. Repeat the procedure for k times.

5. Using a model evaluation metric, summarize the model’s skill.

By following this procedure k-fold cross validation removes the splitting bias which

is present in the previous techniques.
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Figure 5.4: K-fold cross validation

5.2.4 Leave-One-Out Cross Validation (LOOCV)

LOOCV is specially used in datasets where data are related to human subjects like

in this dataset of human activity recognition. Different subjects carry out different

activities in unique ways. Because of this variation, it is harder to predict a new

subject’s activity. To address this problem, we split the data according to each

subject. That means each split contains only one subject’s data. Then we perform

the cross validation to assess the performance of the model on a new subject.
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5.3 Results

5.3.1 Fall Detection

For the fall detection task, we had two classes: fall and non-fall. We experimented

with different models and conducted a thorough hyperparameter tuning. Then we

evaluated the performance of the models using a 75% train-test split and a 10-fold

cross validation.

Table 5.1: Result of fall detection

Model
75% Train-test split 10-fold CV

Accuracy F1 score Accuracy F1 score

Logistic Regression 0.657 0.632 0.762 0.772

Support Vector Classifier 0.938 0.929 0.921 0.922

K Nearest Neighbors 0.923 0.909 0.921 0.924

Random Forest 0.966 0.962 0.967 0.967

Extra Trees 0.980 0.978 0.985 0.985

XGBoost 0.953 0.947 0.954 0.959

Using the 5.1, we can find the best model is the Extra Trees Classifier which

obtained 98.5% accuracy and F1 score in 10-fold CV and 98% and 97.8% accuracy

and F1 score in 75% train-test split. We plotted the confusion matrix of this model

for 75% train-test split.
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Figure 5.5: Confusion matrix for fall detection

The results of fall detection is summarized in 5.6
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Figure 5.6: Fall detection results

5.3.2 Human Activity Recognition

We have five classes of human activity: fall, walk, stand, empty room and pres-

ence. We took a similar approach for human activity recognition as fall detection

mentioned in the previous sub-section. The results are depicted in table 5.2.

Table 5.2: Result of human activity recognition

Model
75% Train-test split 10-fold CV

Accuracy F1 score Accuracy F1 score

Logistic Regression 0.789 0.799 0.824 0.82

Support Vector Classifier 0.908 0.909 0.922 0.92

K Nearest Neighbors 0.879 0.885 0.912 0.909

Random Forest 0.927 0.928 0.968 0.967

Extra Trees 0.936 0.937 0.969 0.969

XGBoost 0.931 0.931 0.964 0.964

Like fall detection, the Extra Trees Classifier gives better results in this task too.

The obtained confusion matrix is shown in 5.7.
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Figure 5.7: Confusion matrix for human activity recognition

The results of human activity recognition is summarized in 5.8
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Figure 5.8: Human activity recognition results

5.4 Analysis of in Terms of Speed

We also conducted an execution time analysis to show that our proposed system

is able to run in real-time. The analysis was done on a total of 400 data samples

where 300 of them were in the training set and the remaining 100 data samples

were in the test set. So, the training data collection time was 1200 seconds and

the test data collection time was 400 seconds. We used a lower mid-level laptop

with core i5 7200U processor clocked at 2.5 GHz and 8GB RAM to run the time

analysis. By looking at 5.3 we can see that, to process the inference data of 400

seconds, the best model Extra trees took only 5 seconds to predict in the multiclass

classification problem and 4 seconds to predict in the binary classification problem.

So, this system is capable of processing data from up to 80 devices simultaneously

in real-time. Also, the fastest model tested was K Nearest Neighbors which took

only 0.1 seconds to predict a data of 400 seconds. So, it can easily be concluded

that our proposed system can run and infer in real-time for a number of devices

simultaneously.
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Table 5.3: Execution time of the models

Model
Binary Classification Multi-class Classification

Training

time (s)

Inference

time (s)

Training

time (s)

Inference

time (s)

Logistic Regression 1.4 0.2 1.6 0.2

Support Vector Classifier 2 0.2 2 0.2

K Nearest Neighbors 0.3 0.1 0.4 0.1

Random Forest 15 3 30 6

Extra Trees 15 4 17 5

XGBoost 18 4 26 6



CHAPTER 6

CONCLUSION AND FUTURE SCOPE

In this project, we have proposed a non-contact fall detection and human ac-

tivity recognition system using embedded devices. The objective of our project

was to overcome the drawbacks of the now popular systems that use wearable

devices and/or computer vision. Using esp32 and its Wi-Fi capabilities, we have

implemented a robust fall detection system that is also able to recognize different

activities, and is able to detect if a room is empty. We have analyzed CSI data

collected from two esp32 microcontrollers and gone through an elaborate process

of cleaning, preprocessing, feature extraction, feature selection and classification

using various machine learning models. Through this process, we were able to per-

form accurate human activity recognition and fall detection. The use of embedded

devices made the system open to heavy modifications and lowered its deployment

cost, making it highly flexible and affordable.

6.1 Discussion

In this project, we conducted two different tasks and achieved great accuracy. For

the first task, fall detection, the dataset is quite balanced. But for the human

activity recognition task, the dataset was moderately unbalanced which led to

lower accuracy. The confusion matrices in 5.5 and 5.7 also depict the same fact.

66
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Although our system is able to recognize different human activities including falls

as shown in Chapter 5, our primary goal for this project is fall detection. The

reason behind this is that no CSI-based system is able to localize the activities, so

the opportunity for real world application is limited for most activities. We can

also see from the works of Li et el.[9] that accuracy of Wi-Fi CSI-based activity

detection systems drops considerably when multiple users perform different activ-

ities at the same time. But in case of fall activity, these limitations are irrelevant

as in an event of a fall, immediate attention is required regardless.

6.2 Future Scopes

Our proposed system is effective, yet has much room for improvement. The lim-

itations we aim to overcome and the improvements we want to implement in the

future are as follows:

1. The devices we have used to implement the system use PCB antennas which

are not very effective. Using external omnidirectional antennas would in-

crease the effectiveness of the antenna even more.

2. We were able to send and receive packets from one device to another only

at relatively small distances and in LoS condition. The reason behind this is

that the devices are low power consuming devices. Designing a device that

is able to send more powerful signals will solve these problems.

3. Designing an enclosure that houses a power system would allow deploying

the system easily in various locations.

4. We have only collected data in a controlled environment. Collecting and

analyzing data from uncontrolled environments where a lot more moving

objects are present would make the system more robust.

5. Implementing some sort of GUI or interfacing the system with other devices

such as smart phones would make this system more user friendly.
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6. Although we have been able to successfully recognize different activities,

we are unable to localize the activity. This can be done by using multi-

dimensional information such as ToF(Time of Flight), AoA(Angle of arrival)

and Doppler shift[42].
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APPENDIX A: LIST OF ACRONYMS

CSI Channel State Information

LOS Line of Sight scenario

SVM Support Vector Machine

LSTM Long Short-Term Memory

NIC Network Interface Card

DWT Discrete Wavelet Transform

PCA Principal Component Analysis

IEEE Institute of Electrical and Electronics Engineers

AP Access Point

WMA Weighted Moving Average

ICA Independent Component Analysis

CNN Convolutional Neural Networks

ULP Ultra-Low Power

RAM Random Access Memory

ROM Read Only Memory

EDR Enhanced Data Rate

BLE Bluetooth Low Energy

SPI Serial Peripheral Interface

MAC Media Access Control

DMA Direct Memory Access

PWM Pulse Width Modulation

WPA Wi-Fi Protected Access
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WLAN Wireless Local Area Network

WAPI WLAN Authentication and Privacy Infrastructure

ECC Elliptic Curve Cryptography

RNG Random Number Generator

GPIO General-Purpose Input/Output

RTC Real Time Clock

OFDM Orthogonal Frequency Division Multiplexing

QAM Quadrature Amplitude Modulation

RSSI Received Signal Strength Indication

MCS Modulation Coding Scheme

MIMO Multiple-Input Multiple-Output

UART Universal Asynchronous Receiver Transmitter

MCU Micro Controller Unit

CPU Central Processing Unit

RF Radio Frequency

LAN Local Area Network

MU-MIMO Multi-User MIMO

DSL Digital Subscriber Line

RL Reinforcement Learning

ICMP Internet Control Message Protocol

PCB Printed Circuit Board

BPSK Binary Phase-Shift keying

FFT Fast Fourier Transform

DFT Discrete Fourier Transform

IDFT Inverse Discrete Fourier Transform

STFP Short-Time Fourier Transform

SDR Software Defined Radio

CWT Continuous Wavelet Transform

IDWT Inverse Discrete Wavelet Transform
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PCC Pearson’s Correlation Coefficient

DT Decision Tree

TP True Positive

FP False Positive

TN True Negative

FN False Negative

TPR True Positive Rate

FPR False Positive Rate

FNR False Negative Rate

AUC Area Under Curve

ROC Receiver Operating Characteristic

CV Cross Validation

LOOCV Leave-One-Out Cross Validation

LR Logistic Regression

SVC Support Vector Classifier

KNN K Nearest Neighbors

RFC Randon Forest Classifier

ETC Extra Trees Classifier

XGB XGBoost

GUI Graphical User Interface
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