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A B S T R A C T   

The non-invasive fetal electrocardiogram (fECG) enables easy detection of developing heart abnormalities, 
leading to a significant reduction in infant mortality rate and post-natal complications. Due to the overlapping of 
maternal and fetal R-peaks, the low amplitude of the fECG, systematic and ambient noises, typical signal 
extraction methods, such as adaptive filters, independent component analysis, empirical mode decomposition, 
etc., are unable to produce satisfactory fECG. While some techniques can produce accurate QRS waves, they 
often ignore other important aspects of the ECG. Utilizing extensive preprocessing and an appropriate frame
work, our approach, built upon 1D CycleGAN, achieves fECG signal reconstruction from the mECG signal while 
preserving its morphology. The performance of our solution was evaluated by combining two available datasets 
from Physionet, “Abdominal and Direct Fetal ECG Database” and “Fetal electrocardiograms, direct and 
abdominal with reference heartbeat annotations”, where it achieved an average PCC and Spectral-Correlation 
score of 88.4% and 89.4%, respectively. It detects the fQRS of the signal with accuracy, precision, recall and 
F1 score of 92.6%, 97.6%, 94.8% and 96.4%, respectively. It can also accurately produce the estimation of fetal 
heart rate and R-R interval with an error of 0.25% and 0.27%, respectively. The main contribution of our work is 
that, unlike similar studies, it can retain the morphology of the ECG signal with high fidelity. The accuracy of our 
solution for fetal heart rate and R-R interval length is comparable to existing state-of-the-art techniques. This 
makes it a highly effective tool for early diagnosis of fetal heart diseases and regular health checkups of the fetus.   

1. Introduction 

ECG signal analysis is a common technique for monitoring and 
diagnosing a range of common heart conditions (Jeffries, 2003). The 
signal is obtained by placing electrodes on an adult’s chest, hands, or 
legs (Hasan, 2007). This method can also be customized for obtaining a 
fetal electrocardiogram (fECG), offering several advantages, such as the 
ability to detect fetal heart abnormalities. The procedures for recording 
fECG can be either invasive or non-invasive. In the case of invasive fECG 

recording, electrodes are positioned on the fetal scalp, but this is done 
only during the later stages of pregnancy. The invasive method for fECG 
recording produces excellent results but can cause several complications 
and infections (Barnova, 2021b). However, clinical care and delivery 
planning can benefit from early diagnosis of aberrant fECG at earlier 
stages of pregnancy. A non-invasive alternative is to carry out a mother 
ECG and separate the fECG from the mother Electrocardiogram (mECG), 
which is recorded by placing the electrodes on the mother’s abdomen. 
The Non-invasive fECG (NI-fECG) presents a promising diagnostic 
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approach capable of detecting various fetal cardiac conditions during 
the early stages of pregnancy. This method can effectively identify 
conditions like arrhythmias, septal defects, aortic stenosis, and several 
genetic disorders. It achieves this by analyzing essential ECG parameters 
such as fetal heart rate (FHR), heart rate variability (HRV), and ECG 
morphological information, including PR, ST, and QT intervals. Through 
these measurements, NI-fECG becomes a valuable tool in diagnosing and 
monitoring fetal health with minimal invasiveness (Clifford, 2014) etc. 
For example, the FHR is calculated from the recorded fECG, and its value 
is compared to the normal heart rate for the corresponding gestational 
age. A normal heart rate indicates that the mother and fetus are 
receiving an adequate amount of oxygen. On the other hand, anomalies 
in heart rate may indicate a problem with the fetal cardiac system or the 
oxygen transfer route (Anisha, 2021). 

Apart from NI-fECG, numerous alternative non-invasive techniques 
exist for monitoring fetal heart rhythm. These approaches are valuable 
in capturing electrical stimulation patterns akin to ECG recordings. One 
such method is ultrasonic fetal cardiotocography (CTG), which employs 
pressure transducers to identify uterine contractions and track fetal 
heart rates. However, CTG lacks the capability to measure beat-to-beat 
heart rate data, and there are potential safety concerns linked to pro
longed exposure to ultrasound irradiation. As a result, this method is 
unsuitable for long-term monitoring purposes (Peters, 2001). Fetal 
magnetocardiography (FMCG) is another reliable technique that uses 
SQUID (Superconductive Quantum Interference Device) sensors placed 
close to the mother’s abdomen to detect the magnetic field of the fetal 
heart from which electrical cardiac waveforms can be extracted. Despite 
providing high-quality signals, FMCG is far less popular due to its cost 
and complicated installation. Comparing these methods, NI-fECG is 
inexpensive, practical, user-friendly, and non-invasive and at the same 
time, makes it possible to monitor and morphologically analyze the 
fetus’s heart continuously, even during labor (Clifford, 2014). 

Extraction of fECG from mECG is rather challenging as mECG often 
contains a variety of noises resulting from a variety of sources such as 
baseline drift, motion artifacts, power-line noise, uterine and muscle 
contractions, loose electrode connection, and white noise (Clifford, 
2006; Hasan, 2007). This makes fECG extraction very challenging, even 
if only a slight amount of distortion is present in the mECG. A typical 
fECG has several significant elements like P waves, ST segments, and T 
waves which are seen to be useful in diagnosing many diseases in the 
fetal stage (Shepoval’nikov, 2006). Still, most of the previous works on 
abdominal mECG focused on detecting only the QRS complex, not the 
whole fECG. Several algorithms and techniques including adaptive fil
ters, least mean square (LMS), recursive least square (RLS), Kalman 
filters and extended state Kalman filters are used in fECG extraction 
problem (Ferrara, 1982; Niknazar, 2012; Rafaely, 2000). However, 
these algorithms cannot work efficiently when mECG and fECG R-peaks 
coincide and require a high signal-to-noise ratio (SNR) value. On the 
other hand, independent component analysis (ICA) and principal 
component analysis (PCA)-based techniques are not robust enough and 
require specific electrode arrangements (Behar, 2014; Martinek, 2018). 
The issues with the aforementioned algorithms make the task of 
extracting fECG from mECG even more challenging.Supplementary 
Material. 

Due to the notable limitations of conventional methods, the adoption 
of deep learning-based approaches becomes a viable option. According 
to W.J. Zhang et al. (W. Zhang, 2018), the outcome of learning or deep 
learning is a mapping from inputs to outputs (a class or an instance). 
Compared to traditional techniques, deep learning can be used to learn 
very complex mappings which can be used to suppress the mECG to 
extract only the fECG. Generative Adversarial Networks (GANs) show 
excellent performance in noise reduction (Chen, 2020; Tran, 2020), 
which can be used to suppress noise and ensure efficacious translation 
between input and label signals. Specifically, CycleGAN has recently 
been used in a variety of different paired generation tasks including non- 
parallel voice conversion (Kaneko, 2019), X-ray style transfer 

(Tmenova, 2019) and MR to CT conversion (Yang, 2018). It is reported 
that CycleGAN can learn to hide or suppress any particular information 
or signal making it the perfect choice for our task (Chu, 2017). 

Our proposed solution employs a 1D CycleGAN, incorporating a 
novel loss function. This advanced model ensures an accurate recon
struction of fECG data while remaining resilient to human errors, 
thereby enhancing the overall performance. The contributions of this 
study can be described as follows:  

• While most existing solutions focus on fQRS detection, our solution 
can reconstruct the whole fECG signal while preserving its 
morphology. This means that information about P, S, T waves and 
PR, ST and QT intervals are obtainable from the reconstructed signal, 
which is essential for diagnosing various diseases. 

• It provides comparable performance to the state-of-the-art tech
niques in case of fQRS detection, which is useful for R-peak 
detection.  

• Our approach uses a novel weighted loss that significantly improves 
the quality of the generated fECG signal.  

• Our preprocessing module includes robust techniques that discard 
artifacts i.e., filter lag, transient response, etc.  

• It can measure fetal heart rate and heart rate variability metrics with 
great accuracy from the generated fECG signal.  

• We used a mixture of two different real-world datasets which makes 
the framework more robust and independent of the experimental 
setup, electrode position, recording equipment and other biases. 

This document is organized into five sections. Section 2 is dedicated 
to exploring related works, where we examine their respective advan
tages and disadvantages. Following that, in the subsequent section, we 
offer a detailed account of the datasets used and present the conceptual 
framework underpinning our proposed methodology. Section 4 suc
cinctly summarizes the key findings derived from this study. Lastly, 
section 5 encompasses the concluding discussion, where we also outline 
prospects and potential avenues for further research. 

2. Related works 

Although the majority of earlier research has concentrated on the 
extraction of QRS waves (Varanini, 2017; Zhong, 2018), the entire fECG 
signal waveform must be extracted for a complete assessment (Shepo
val’nikov, 2006). The utilization of adaptive filters may lead to the 
elimination of certain segments of the fetal electrocardiogram (fECG) 
signal due to fluctuations in the filters’ coefficients in response to a time- 
varying signal. This poses several challenges for processing the maternal 
electrocardiogram (mECG) signal. Primarily, the convergence speed of 
adaptive filter algorithms is influenced by the power spectral density 
(PSD) of the input signal (Rafaely, 2000). The least mean-square error 
can be used as the objective function to achieve convergence, but 
adaptive filters require a constant and flat power spectrum, which does 
not match the power spectrums of real-world signals. Second, colored 
noise components in real-world data significantly reduce the efficiency 
of adaptive filters (Mumford, 2010). 

On the other hand, least mean square (LMS) and recursive least 
square (RLS) algorithms are typically employed for narrowband fre
quencies (Rafaely, 2000). Nevertheless, a reference signal closely 
resembling the morphology of the mECG waveform is essential for these 
algorithms. Thus, they are optimized using Weiner’s optimal solution. 
However, when the peaks of the mECG and fECG align, techniques 
relying on temporal characteristics, such as template-based and con
ventional Kalman filters, may prove ineffective. To overcome this 
challenge and ensure reliable fECG extraction, the extended state Kal
man filter was developed, specifically addressing the QRS coincidence 
issue (Niknazar, 2012). However, due to their higher computational 
cost, they are not very effective and are unable to detect R-peaks pre
cisely. Different forms of blind source separation methods, such as 
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independent component analysis (ICA) and principal component anal
ysis (PCA), are available (Behar, 2014) to address the drawbacks of 
adaptive filters. These techniques are built using various abdominal 
channels to create a linear stationary mixing matrix (Martinek, 2018). 
One study used a blind source separation technique to identify a refer
ence signal for the adaptive filter to extract fECG from a single channel, 
achieving a 96% F1 score for fetal QRS (fQRS) detection. However, these 
techniques have a specific electrode configuration and a low signal-to- 
noise ratio (SNR). In addition, they necessitate intensive post- 
processing for higher caliber fECG extraction (Mohebbian, 2020). 

Jezewski et al. (Jezewski, 2012) conducted research to ascertain the 
fetal heart rate using abdominal ECG signals. They achieved this by 
detecting the fetal QRS complex and subsequently compared their 
findings with the results obtained through Doppler ultrasound moni
toring techniques. The research concluded that the indirect ECG-based 
method of fetal heart rate detection outperformed traditional ultra
sound monitoring techniques. On the downside, the process of inference 
was handcrafted and offline which is not suitable for real-life applica
tions. Jaros et al. (Jaros, 2019) used a combination of independent 
component analysis (ICA), adaptive neuro-fuzzy inference system 
(ANFIS) algorithm and recursive least square (RLS) algorithm for fECG 

extraction. However, these techniques suffer when there is an overlap 
between mother QRS and fetal QRS. 

Zhang et al. (N. Zhang, 2017) achieved a 99% F1 score for QRS 
complex recognition by combining smooth window and singular value 
decomposition (SVD). In addition to proposing the prefix tree-based 
method known as QRStree for QRS detection, Zhong et al. (Zhong, 
2018) also suggested a convolutional neural network (CNN) for QRS 
complex detection and achieved a 77% F1 score. Moreover, the present 
research introduces an innovative approach called QRStree, which relies 
on a prefix tree-based technique for accurate QRS detection, attaining an 
impressive 95% F1 score. To represent sequential fQRS, a series of 
alphabetical letters was employed. These strings were then stored in a 
prefix tree structure, enabling the selection of an optimal path for pre
cise fQRS detection. By leveraging the connections established by fQRS 
in the tree, the proposed method enhances the accuracy of the detection 
process. 

Mohebbian et al. (Mohebbian, 2021) used attention-based CycleGAN 
to extract fECG and achieved 99.7% F1-score [CI: 95%: 97.8–99.9], 
99.6% F1-score [CI: 95%: 98.2%, 99.9%] and 99.3% F1-score [CI: 95%: 
95.3%, 99.9%] for fetal QRS detection on the A&D fECG, NI-fECG and 
NI-fECG challenge datasets, respectively. 

Fig. 1. General framework of our proposed methodology.  
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The researchers made an interesting finding during their investiga
tion. It was observed that convolutional kernels had an unintended ef
fect of amplifying both the maternal and fetal R waves, which was 
considered undesirable. In response to this issue, they introduced an 
attention layer that effectively masked certain segments of the signal. By 
doing so, they could prevent processing those particular regions, which 
had the potential to lead to increased errors. 

Moreover, the team opted to utilize 1D convolutional layers with a 
sine activation function. This choice proved to be superior compared to 
popular alternatives like Leaky ReLU. The sine activation function 
demonstrated its capability to better retain intricate signal details, 

resulting in favorable outcomes when applied to various types of data, 
including audio, video, and image signals. 

In many of these studies, QRS waves are accurately identified; 
however, other components of the fECG signal must be considered. A 
universal model that could be applied to participants with diverse 
electrode locations and surroundings was also not examined in earlier 
studies. The F1 score was used to evaluate performance in practically all 
of the published work for QRS detection, although signal reconstruction 
metrics like mean absolute error (MAE), root mean squared error 
(RMSE), and correlation coefficient (CC) are not provided. 

Fig. 2. Experimental setup (Matonia, 2020).  

Fig. 3. Raw data from dataset 1.  
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3. Methodology 

In this section, we will begin by providing an overview of our 
methodology. Following that, we will delve into a detailed explanation 
of the proposed approach after discussing the datasets utilized in this 
study. 

3.1. Overview 

The general framework of our proposed methodology is given in 
Fig. 1. A four-channel mECG is collected by placing four electrodes on 
the abdomen of the mother. The acquired signal has three components: 
pure mECG, fECG, and noise. 

The fetal electrocardiogram (fECG) is obtained by attaching a single 
electrode to the fetus’s scalp. The objective is to separate this fECG from 
the four-channel maternal electrocardiogram (mECG). The initial steps 
involve preprocessing the signals, including resampling, baseline 
correction, filtering, segmentation, and normalization. To achieve this, 
various versions of the 1D CycleGAN model are trained using fECG 
signals obtained directly from the fetal scalp as the reference or ground 
truth. Once the models are trained, they are applied to predict the fECG 
from test signals, which have also undergone the same preprocessing 
steps. To identify the best-performing model, the generated signals are 
evaluated using several metrics: Pearson Cross-Correlation (PCC), 
Spectral Correlation, Spectral RMSE (Root Mean Squared Error), MAE 
(Mean Absolute Error), MAPE (Mean Absolute Percentage Error), and 
RMSE. Detailed information regarding the datasets used and the meth
odology adopted is provided in the subsequent sections. 

3.2. Dataset description 

3.2.1. Dataset 1 
The first dataset we used is the “Abdominal and Direct fECG (A&D 

fECG) Database” from Physionet (Jezewski, 2012). This dataset includes 
4 channel mECG signals that were recorded from 5 women’s abdomens 
between 38 and 41 weeks of pregnancy. Additionally, it includes the 
simultaneous fECG recorded from the fetus’s scalp and expert-annotated 
R-peak locations. With the help of four abdominal electrodes positioned 
around the navel, the 4-channel ECG signal was recorded (Fig. 2). 
Throughout the experiment, a reference electrode was affixed above the 
pubic symphysis, while a common mode reference electrode was posi
tioned on the left leg. The consistent placement of these electrodes was 
maintained throughout the study. To enhance skin conductivity, abra
sive material was utilized in conjunction with Ag-AgCl electrodes. The 
corresponding experimental setup is shown in Fig. 2. 

Five records for five subjects are included in the data set. Each 
recording contains a comparable 5-minute single-channel fECG and 4- 
channel mECG signals. All signals were sampled with a 16-bit resolu
tion at 1000 Hz. The bandwidth of the signal is 1–150 Hz. The sample 
signal segment for the four-channel mECG and ground truth fECG in 
Dataset 1 is shown in Fig. 3. 

3.2.2. Dataset 2 
The second dataset used in this study is “Fetal electrocardiograms, 

direct and abdominal with reference heartbeat annotations” from 
reference (Goldberger, 2000; Matonia, 2020). This dataset is divided 
into two sections: a) labor signals and b) pregnancy signals. In the 
remainder of the paper, we refer to labor signals as “Dataset 2a” and 
pregnancy signals as “Dataset 2b”. Dataset 2a comprises recordings of 4- 
channel maternal Electrocardiogram (mECG) signals obtained from the 
abdomens of 12 women. Among these recordings, 5 were captured 

Fig. 4. Raw data from dataset 2.  
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Fig. 5. Comparison between raw fECG and preprocessed fECG (a), 4-channel raw mECG and preprocessed mECG (b) (top: raw, bottom: preprocessed).  
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during the late stages of childbirth, utilizing a sampling rate of 500 Hz. 
Each of the 12 records corresponds to a different woman and contains an 
ECG signal lasting five minutes. Furthermore, Dataset 2a also contains 
simultaneous fetal Electrocardiogram (fECG) data extracted from the 
fetus’s scalp, accompanied by expert-annotated fECG R-peak locations. 
The sampling rate for the fECG signal is set at 1000 Hz. 

In Dataset 2b, ten women’s four channels abdominal mECGs from 
the 32nd and 42nd weeks of gestation were recorded. The mECG is 
sampled at 500 Hz. Each record has a 20-minute signal and contains 10 
records for 10 women. The concurrent fECG recorded from the fetus’s 
scalp is not included. Instead, it has expert-labeled R-peak positions of 
fECG. A sample of raw data from dataset 2 is shown in Fig. 4. 

3.3. Proposed method 

3.3.1. Preprocessing 
Biomedical signals are corrupted by numerous noises and distor

tions, including but not restricted to baseline drift, motion artifacts, and 
power line noise (Hossain, 2022), (Kiranyaz, 2022), (Shuzan, 2021). In 
the datasets, both the fECG and mECG are harmed severely by these 
disturbances. To address these issues, several effective preprocessing 
techniques are chosen carefully and applied together with a sophisti
cated strategy to retain the signal’s morphology as much as possible. The 
fECG and the mECG signals from both datasets are first resampled to 
512 Hz to maintain uniformity in sampling frequency. This sampling 
frequency is determined empirically through testing. A bandstop filter is 
applied to both the mECG and fECG signals with a center frequency of 
approximately 50 Hz to remove the power line noise. According to the 

recommendation by Bailey et al., the minimum bandwidth of a clinical 
ECG should be 75 Hz to 100 Hz (Bailey, 1990). Moreover, the QRS 
complex of an fECG signal lies in a range of 10 to 15 Hz, and the 
dominant frequency of an ECG is under 35 Hz (Sameni, 2010). As a 
result, a higher-order Butterworth bandpass filter is utilized with cutoff 
frequencies set at 0.1 Hz and 70 Hz to process the signals, namely mECG 
and fECG. Both signals exhibit baseline drift, which poses a problem. To 
address this issue, an approach is adopted involving the fitting of a 
polynomial to the baseline drift, which is then subtracted from the 
respective signal. The technique is separately applied to the mECG and 
fECG signals, utilizing polynomial orders of 8 and 36, respectively. 
These orders are determined through a trial-and-error process. 
Following this step, moving average filters are implemented to smooth 
out the signals further. The mECG signal is subjected to a moving 
average filter with a window size of 4, while the fECG signal is processed 
with a moving average filter using a window size of 10. Subsequently, 
the data is divided into segments, each having a window size of 512 data 
points (equivalent to 1 s of data). Baseline fixing is then applied to each 
segment, which effectively removes the local baseline drift from the 
signals. Each signal segment is then range normalized between 0 and 1 
using the following formula: 

Xn(i) =
X(i) − Xmin

Xmax − Xmin
(1) 

Here, X(i) is the original amplitude of the segment, Xn(i) is the 
normalized segment, Xmin and Xmax are the minimum and maximum 
amplitude of the signal, respectively. 

The final signal matrix shape is N× M× C, where N is the total 

Fig. 6. Lag Cancellation of the higher order filter.  

Fig. 7. Original CycleGAN architecture (Zhu, 2017).  
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number of signal segments, M is the length of the signal, and C is the 
total number of channels. In this study, C is 4 and 1 for mECG and fECG, 
respectively. A comparison between the raw and preprocessed data is 
shown in Fig. 5. 

There are a few complications while applying the preprocessing 
techniques to the ECG signals. In this paper, higher-order filters are 
chosen because of their ability to provide more attenuation and a nar
rower transition band, resulting in better separation between the pass
band and the stopband. However, higher-order filters often cause phase 
lag, which is completely unwanted and destroys the purpose of pre
processing. To eliminate this phase lag, an apply-flip-reapply technique 

is employed. First, the higher-order filter is applied to the signal. After 
that, the signal is flipped temporally, and the same filter with identical 
parameters is applied again to the flipped version, which cancels the 
phase lag. Finally, the signal is flipped again to get the original signal 
with zero lag. The lag cancellation process is described in Fig. 6. Another 
problem is the presence of ripples at the start and end of the signal after 
baseline correction. This problem is addressed by applying an over
lapping window and slicing the ripples from the beginning and the end. 

3.3.2. Model architecture 
Here, we first describe the architecture of the main framework, 

Fig. 8. Architecture of the Proposed model: (a) the Resnet Block, (b) the Generator Block, and (c) the.  
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losses, generator and then the discriminator of the proposed 
methodology. 

3.3.2.1. CycleGAN. In this study, we propose a 1D CycleGAN-based 
model which extracts the fECG from a four-channel mECG. CycleGAN, 
as described in Fig. 7, is essentially a paired network that learns two 
mappings using two generators: G1 : X→Y and G2 : Y→X. For each 
mapping, a Generative adversarial network (GAN) (Goodfellow, 2020) 
network is trained such that ŷ = G1(X) is almost identical to Y and x̂ =

G2(Y) is very much similar to X. Mathematically, G1 and G2 should be 
inverse of each other and to maintain the consistency of these two 
corresponding networks, we add a cycle consistency loss (Zhou, 2016), 
which helps to maintain the properties G1(G2(Y) ) = Y and G2(G1(X) ) =
X (Zhu, 2017). Two adversarial discriminators, D1 and D2, are associated 
with the generators of the GAN networks, which compute the similarity 
between the ground truth and generated output of the mapping. Hence, 
discriminators need another type of loss and we call this second one 
adversarial loss or GAN loss. Finally, the discriminators are connected to 
the alternate generators to complete the cycle. In the original imple
mentation, adversarial loss (L adv) and cycle consistency loss (L cyc) are 
defined as follows: 

L adv(G1,X,Y,D2) =
1
N

∑N

i=1
yi[logD2(yi) ]+ xi[1 − logD2(G1(xi) ) ] (2)  

L cyc(G1,G2) =
1
N

∑N

i=1
‖G2(G1(xi) ) − xi‖1 +

1
N

∑N

i=1
‖G1(G2(yi) ) − yi‖1 (3) 

Here, N signifies the total number of training examples and ‖x‖1 
denotes the L1 norm of x, G1 and G2 are generators of the CycleGAN, D1 

and D2 are corresponding discriminators. 
In this paper, we want to map mECG signals to fECG signals. Hence, 

we need one generator mapping mECG to fECG (G1) and another map
ping fECG to mECG (G2). Their corresponding discriminators are 
denoted as D1 and D2. Instead of log loss, we initially used the L1 loss 
(L L1) as the adversarial loss. However, in the case of ECG, it is also 
critical to preserve the morphology, position of QRS complex and 
spectral components. So, we added three more loss components to the 
adversarial loss: spectral loss (L spec), temporal loss (L temp) and power 
loss (L power) to make the extracted signal morphologically very close to 
the actual ECG signal. 

L L1 = [1 − D1(G1(X) ) ]2 + [1 − D2(G2(Y) ) ]2 (4)  

L spec =
1 − ρ(PSD(Y),PSD(G1(X) ) )

ρ(PSD(Y),PSD(X) )
(5)  

L temp = 1 − ρ(Y,G1(Y) ) (6)  

L power =

⃒
⃒
⃒
⃒
PowerY − PowerG1(X)

PowerY

⃒
⃒
⃒
⃒ (7) 

Here, PSD signifies the power spectral density, PowerY is the power of 
the signal of interest and ρ is the Pearson’s correlation coefficient (PCC). 
PCC is a measure of correlation between two signals and can be 
formulated by: 

ρ(x, y) =
∑N

i=1(xi − x)(yi − y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
i=1(yi − y)2

√ (8) 

Here, x and y are the mean values of signals x and y respectively and 
N is their length. 

Thus, the modified adversarial loss became: 

L adv = L L1 + p × L spec + q × L temp + r × L power (9) 

Here, p, q and r are weight coefficients for spectral loss, temporal loss 
and power loss accordingly. Experimentally, we found p = 2, q = 4, and 
r = 1 to produce the best ECG signals. These three weighted loss com
ponents played a very important role in extracting fECG signals which 
are described in ablation studies. 

A general-purpose training algorithm of the proposed CycleGAN 
architecture is provided below:  

Algorithm 1: Training algorithm for CycleGAN for mini-batch gradient descent. 

k is the parameter for mini-batch number. 
for number of training iterations do 
for k steps do   

• Draw a minibatch of m samples {x(1),⋯, x(m)} from domain X   

• Draw a minibatch of m samples {y(1),⋯, y(m)} from domain Y 
Calculate the discriminator loss on the ground truth signals: 

JDground =
1
m
∑m

i=1

(
DX

(
x(i) ) − 1

)2
+

(
DY

(
y(i)

)
− 1

)2 

Calculate the discriminator loss on the target signals: 

JDtarget =
1
m
∑m

i=1

(
DY

(
GX

(
x(i) ) ) )2

+
(
DX

(
GY

(
y(i)

) ) )2 

Update the discriminators. 
Calculate the generator GY loss: 

J(GY),(GX)

cycle =
1
m
∑m

i=1
‖GX

(
GY

(
yi
) )

− yi‖1 

JspecY =
1
m
∑m

i=1

1 − ρ
(
PSD

(
x(i) ), PSD

(
GY

(
y(i)

) ) )

ρ(PSD(x(i) ),PSD(y(i) ) )

JtempY =
1
m
∑m

i=1
1 − ρ

(
x(i) ,GY

(
y(i)

) )

JpowerY =
1
m
∑m

i=1

⃒
⃒
⃒
⃒
⃒

Power(y(i)) − Power
(
GY

(
y(i)

) )

Power(y(i))

⃒
⃒
⃒
⃒
⃒

JGX =
1
m
∑m

i=1

(
DX

(
GY

(
y(i)

)
− 1

) )2
+ J(GY),(GX )

cycle + p× Jspec + p× Jtemp + p× Jpower 

Calculate the generator GX loss: 

J(GX),(GY)

cycle =
1
m
∑m

i=1
‖GY

(
GX

(
x(i) ) ) − x(i)‖1 

JspecX =
1
m
∑m

i=1

1 − ρ
(
PSD

(
y(i)

)
,PSD

(
GX

(
x(i) ) ) )

ρ(PSD(x(i) ), PSD(y(i) ) )

JtempX =
1
m
∑m

i=1
1 − ρ

(
y(i) ,Gx

(
x(i) ) )

JpowerX =
1
m
∑m

i=1

⃒
⃒
⃒
⃒
⃒

Power(x(i)) − Power
(
GX

(
x(i) ) )

Power(x(i))

⃒
⃒
⃒
⃒
⃒

JGX =
1
m
∑m

i=1

(
DY

(
GX

(
x(i) ) − 1

) )2
+ J(GX),(GY)

cycle + p× Jspec + p× Jtemp + p× Jpower   

• Update the generators. 
endfor 
endfor  

3.3.2.2. Generator. One of the most prominent issues of deep neural 

Table 1 
Fecg extraction performance on different models (scores are average of five 
folds).  

Generator Discriminator PCC Spec. Corr. Spec. RMSE 

Unet 256 Basic  0.78  0.815  0.529 
Unet 256 Self  0.77  0.816  0.529 
Unet 128 Basic  0.751  0.799  0.54 
Unet 128 Self  0.732  0.77  0.545 
Resnet 9 blocks Basic  0.864  0.872  0.472 
Resnet 9 blocks Self  0.855  0.869  0.481 
Resnet 13 blocks Basic  0.882  0.894  0.428 
Resnet 13 blocks Self  0.871  0.89  0.453 
Self-FPN Basic  0.762  0.805  0.504 
Self-FPN Self  0.738  0.779  0.522  

Table 2 
Fold-wise fECG extraction performance for the best model.  

Fold RMSE MAE PCC Spec. Corr. Spec. RMSE 

1  0.106  0.069  0.89  0.9  0.42 
2  0.109  0.073  0.88  0.88  0.45 
3  0.103  0.068  0.89  0.9  0.42 
4  0.102  0.069  0.89  0.9  0.4 
5  0.115  0.077  0.87  0.89  0.45  

P. Basak et al.                                                                                                                                                                                                                                   



Expert Systems With Applications 235 (2024) 121196

10

networks is the degradation problem, where the accuracy saturates and 
degrades rapidly as the number of layers increases. To address this issue, 
He et al. (He, 2016) proposed a solution to this problem by introducing a 
deep residual learning framework popularly known as Resnet. Every few 
stacked layers, residual learning is adopted. A building block (shown in 
Fig. 8(a)) is defined as: 

y = F(x, {Wi} )+ x (10) 

Here, the input and output vectors for the layers under consideration 
are x and y. The residual mapping to be learned from input x and weights 
Wi is represented by the function F(x, {Wi}). By using a shortcut 
connection and element-wise addition, the operation F+x is carried out. 

Fig. 9. Three samples of extracted fECG signals using the best model (top: Ground Truth, bottom: Estimated fECG).  
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This shortcut connection does not introduce any additional parameters 
or computational complexity. If the dimensions of x and F are not equal, 
a linear projection Wsx is performed by the shortcut connections to 
match the dimensions: 

y = F(x, {Wi})+Wsx (11) 

The form of the residual function F is flexible as any number of layers 
can be implemented per stack. The notations presented here of these 
equations are for fully-connected layers for simplicity, but they are also 
applicable to convolutional layers. The element-wise addition is per
formed channel by channel. 

The generator of our proposed architecture is divided into down
sampling and upsampling layers, with ‘n’ Resnet blocks described be
forehand in between. Our Resnet blocks contain two units, each of which 
contains a ReflectionPad2d layer followed by 64 Conv1d layers and a 
batch normalization layer, with a fully connected and a dropout layer in 
between. A cross-connection is made from the end of the second unit to 
the beginning of the first unit. 

The generator takes as input 4-channel mECG data. These data are 
padded and passed through three one-dimensional convolutional layers 
of sizes 16, 32 and 64. Data are batch normalized and pass through a 
dense layer with the ‘ReLU’ activation function after every convolu
tional layer. These layers together are the downsampling layers. 

Discriminator Block. 
After the data has passed through the Resnet blocks, we upsample the 

data using transposed convolution, where it passed through three Con
vTranspose1D layers of sizes 16, 32 and 64, consecutively. After the first 
two layers, the data are batch normalized and passed through a dense 
layer with the ‘ReLU’ activation function. After the third Con
vTranspose1D layer, the data is passed through a dense layer with the 
‘tanh’ activation function. The complete architecture of the generator is 
represented pictorially in Fig. 8(b). 

We conducted a thorough exploration of various generators, 
encompassing ResNet, Unet, and Feature Pyramid Network (FPN) and 
their different variants. It is essential to highlight that the generative 

neuron’s non-linear characteristics enable the model to learn effectively 
within a streamlined architecture. The Operational Neural Network 
(ONN) leverages this powerful generative neuron, meticulously opti
mized to construct a self-organized ONN model, also referred to as the 
Self-ONN model. As discriminators, we used “Basic Discriminator” and 
“Self-Discriminator”, the basic discriminator being a 3 × 3 PatchGAN 
described in the methodology section. Self-discriminator is essentially a 
1 × 1 PatchGAN with 1D Self-ONN layers. Similarly, the FPN used in the 
study was not a vanIlla FPN model rather it was a Self-FPN model. 

3.3.2.3. Discriminator. We used a 3 × 3 PatchGAN as the discriminator 
of the CycleGAN architecture depicted in Fig. 8(c). PatchGAN solely 
penalizes structure at the scale of local picture patches. It is a sort of 
discriminator for generative adversarial networks. Each patch of an 
image is evaluated by the PatchGAN discriminator to determine if it is 
real or fake. Convolutionally applied to the image, this discriminator 
produces an output by averaging all responses. With the assumption of 
independence between pixels separated by more than a patch diameter, 
such a discriminator effectively models the image as a Markov random 
field. It may be interpreted as a certain texture or style loss (Isola, 2017). 

One kind of GAN that utilizes labels during training is a conditional 
generative adversarial network (CGAN). Its objective can be expressed 
as (Isola, 2017): 

L cGAN(G,D) = Ex,y[logD(x, y)] +Ex,z[log1 − D(x,G(x, z) ) ] (12) 

where E signifies the expected value of the sample. 
Oftentimes, a more traditional loss is mixed with the GAN’s objec

tive. In this case, the L1 loss is added. 

L L1 = Ex,y,z
[
‖y − − G(x, z)‖1

]
(13) 

L1 loss is chosen in this specific case as it encourages less blurring. 
This makes the final objective of the GAN to be: 

G* = argmin
G

max
D

L cGAN(G,D)+ λL L1(G) (14) 

Fig. 9. (continued). 
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where L1 loss is mixed with CGAN loss with a weight of λ. 
The first layer of the discriminator is a Conv4 layer. Afterwards, 

there are three blocks containing a dense, a Conv4, and a normalization 
layer. The last layer is a Conv4 layer preceded by a dense layer with a 
leaky ReLU activation function. 

3.4. Evaluation metrics 

3.4.1. Evaluation of extracted fECG signal 
Both datasets utilize the recorded fECG signal from the fetus’ scalp as 

the reference or ground truth. To ensure unbiased evaluation, the 
datasets were divided into five subsets using the 5-Fold cross-validation 
technique. Then, to assess the quality of the extracted fECG, mean 

Fig. 10. R-peak detection from ground truth and extracted fECG.  
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absolute error (MAE), root mean squared error (RMSE), Pearson’s cor
relation coefficient (PCC), spectral correlation (ηspec), spectral RMSE 
(RMSEspec) metrics were used. For a qualitative evaluation of the signal 
extraction performance, predicted and ground truth signals were plotted 
and visually compared. The following formulae are used to determine 
MAE, RMSE, PCC, spectral correlation and spectral RMSE: 

MAE =
∑N

i=1
|x − xi| (15)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(x − xi)

2
√

(16)  

PCC =

∑N
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
i=1(yi − y)2

√ (17)  

ηspec = 1 −
1 − PCC(PSD(yi),PSD(yi) )

PCC(PSD(yi),PSD(xi) )
(18)  

RMSEspec =
RMS(PSD(yi) − PSD(yi) )

RMS(PSD(yi) )
(19) 

Here, x is the signal of interest, x is the corresponding mean value, 
RMS signifies the root mean square operation. 

3.4.2. Evaluation of fQRS detection 
A modified Engelse and Zeelenberg (EngZee) method (Engelse, 1979; 

Lourenço, 2012) was used to detect the fQRS following the proposed 
model’s extraction of the fECG. Then, evaluation was conducted using 
the F1-Score as well as accuracy, precision and recall. The following 
formulae were used to determine the metrics: 

Accuracy =
TP + TN

TP + TN + FP + FN
(20)  

Precision =
TP

TP + FP
(21)  

Recall =
TP

TP + FN
(22)  

F1 = 2 •
Precision • Recall
Precision + Recall

(23) 

where true positive, true negative, false positive, false negative are 
expressed by TP, TN, FP, FN, respectively. 

3.4.3. Evaluation of heart rate variability 
A healthy heart cyclically pumps blood with a heart rate almost 

constant, with minimal variability. In diseased states, heart rate rhythm 
is distorted and variability in heartbeats can be detected. Comparison of 
healthy and unhealthy heart rhythms, particularly heart rate variability 
will reveal arrhythmia. We have used several metrics to monitor the 
heart of the fetus suggested by Shaffer et al. (Shaffer, 2017). 

Mean R-R interval (μRR): This is the average time interval between 
two consecutive R peaks of the ECG signal, often measured in millisec
onds (ms). If we define the number of R peaks by N and the time of R- 
peak by TRR, μRR can be defined by the following equation: 

μRR =

∑N− 1
i=1 TRR(i + 1) − TRR(i)

N − 1
(24) 

Table 3 
Fqrs detection performances on test set.  

Fold Precision Recall F1 Score Accuracy 

1  0.98  0.95  0.96  0.93 
2  0.97  0.95  0.96  0.92 
3  0.98  0.95  0.97  0.93 
4  0.97  0.95  0.96  0.92 
5  0.98  0.94  0.97  0.92 
Average  0.976  0.948  0.964  0.926  

Table 4 
Comparison with other studies.  

fECG extraction method QRS detection 
method 

Dataset F1 
Score 
(%) 

SWSVD and adaptive filter (N. 
Zhang, 2017) 

Pan-Tompkins (PT) 1  99.4 

Compressive sensing (Da Poian, 
2017) 

Thresholding 1  92.2 

ICA on compressed signal (Gurve, 
2017) 

Thresholding 1  92.5 

Wavelet-based signal denoising ( 
Castillo, 2018) 

Clustering 1  98.63 

Non-Negative Matrix Factorization 
(Gurve, 2019) 

PT 1  94.8 

Residual Encoder-Decoder network 
(Zhong, 2019) 

PT 1  94.1 

ICA, RLS, CWT (Jaros, 2019) CWT 2  90.99 
Principle Component Analysis 

(PCA) (Y. Zhang, 2020) 
Clustering 1  96.09 

ICA, RLS, EMD (Barnova, 2020) WT 2  90.1 
ICA, Fast Transversal Filter (FTF), 

Complementary EEMD (Barnova, 
2021a) 

Continuous Wavelet 
Transform (CWT) 

2  95.86 

Ensemble Empirical Mode 
Decomposition (EEMD) ( 
Barnova, 2021b) 

CWT 2  95.69 

Attention-based CycleGAN ( 
Mohebbian, 2021) 

PT 1  99.70 

STFT and GAN (Zhong, 2021) PT 2  90.05 
Proposed 1D CycleGAN EngZee 1 & 2  96.4  

Table 5 
Heart rate metrics on Test Set.  

Fold ECG μRR(ms) μHR(bpm) σHR(bpm) SDNN/RMSSD PNN50 (%) 

1 Ground truth  473.19  128.52 14.14  0.7  40.45 
Extracted  474.75  129.05 19.5  0.71  42.89 

2 Ground truth  473.18  128.52 14.14  0.7  40.45 
Extracted  476.91  128.23 18.32  0.69  42.62 

3 Ground truth  473.19  128.51 14.15  0.71  40.45 
Extracted  473.3  129.1 17.87  0.69  41.72 

4 Ground truth  473.18  128.52 14.14  0.69  40.44 
Extracted  473.47  129.02 18.0  0.69  40.05 

5 Ground truth  473.2  128.53 14.14  0.7  40.45 
Extracted  473.89  128.87 17.53  0.7  39.65 

Average Ground truth  473.188  128.52 14.142  0.7  40.448 
Extracted  474.464  128.852 18.244  0.696  41.386 

Error (%)   0.27  0.25 29  0.57  2.32  
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Fig. 11. Ablation study of the proposed loss function (a), different learning rates (b), and the number of training epochs (c).  
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Mean heart rate (μHR): Heart rate is one of the most prominent metrics 
of heart monitoring which signifies the number of heart bits per minute. 

Standard deviation of heart rate (σHR): The heart does not oscillate like 
a metronome; instead, the heart rate varies within a range. Standard 
deviation of heart rate is a measure of how much the heart rate deviates 
from the expected value. Generally, it is measured in bits per minute 
(bpm) and can be calculated from the following equation: 

σHR =

∑N
i=1HR(i) − μHR

N − 1
(25) 

Root mean square of successive RR interval differences (RMSSD): 
RMSSD is one of the most popular metrics for HRV and can be calculated 
by measuring the summation of the squared RR interval differences and 
then taking root. 

RMSSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(TRR(i + 1) − TRR(i) )2

N − 1

√

(26) 

SDNN/RMSSD: SDNN is the standard deviation of the normal R-R 
interval. This is a long-term evaluation of heart rate variability and 
correlates to low-frequency components of ECG. On the other hand, 
RMSSD corresponds to high-frequency components of ECG signal 
(Otzenberger, 1998). Hence, the ratio of SDNN and RMSSD signifies LF/ 
HF frequency ratio to some extent and is very important in heart rate 
variability measurement. 

NN50 and PNN50: NN50 is the number of pairs of successive RR 
intervals with a time difference of more than 50 ms. PNN50 is the pro
portion of the number of RR intervals varied by more than 50 ms and the 
total number of RR intervals. 

PNN50 =
NN50

TotalnumberofRRintervals
(27)  

4. Results 

In this section, we will discuss the performance of the proposed 
framework which will be divided into three subsections: fECG extrac
tion, identifying fQRS and heart rate estimation. Later, we will describe 
ablation studies conducted to identify suitable hyperparameters and the 
computational complexity of the experiment. 

4.1. fECG extraction result 

The results for different combinations of three types of generators 
(Unet, Resnet and Self-FPN) and two types of discriminators (basic and 
Self-ONN based) are compiled in Table 1. 

From Table 1, it is evident that Resnet 13 blocks generator and Basic 
discriminator pair performed better with an average PCC score of 0.882. 
This score varied from 0.87 to 0.89 for the five folds depicted in Table 2, 
along with the other metrics. 

Predictions on three sample test images are shown with the ground 
truth in Fig. 9. The extracted fECG signal is very similar to the ground 
truth. The R peaks are detected accurately and some morphological 
information is also preserved. 

4.2. fQRS detection result 

Once the fECG extraction is done, the fQRS is detected from the 
extracted ECG using the EngZee method proposed by Engelse and Zee
lenberg. For measuring the performance of fQRS detection, any R-peak 
within 31.25 ms of the ground truth is considered to be correct. Fig. 10 
contains the fQRS detection results on both ground truth and extracted 
fECG. 

Table 3 shows the related metrics for fQRS detection. All the metrics, 
most notably the F1 score, are uniform for all the folds, which signifies 
the robustness of the performance of our proposed methodology. 

We present a brief comparison of our proposed technique with some 
other proposed methods in Table 4. Although Zhang et al. (N. Zhang, 
2017) achieved a 99.4% F1 score with only smooth window SVD and 
adaptive filter, their study was restricted to only two persons in two 
separate tests. Mohebbian et al. (Mohebbian, 2021) also achieved 
excellent performance with an F1 score of 99.7%, but their methodology 
concentrates primarily on fQRS detection, ignoring the morphology of 
the ECG signal. Castillo et al. (Castillo, 2018) obtained an F1 score of 
98.63% only on the selected signals by the medical specialists. However, 
considering both good and bad signals, their F1 score comes down to 
94.11%. 

4.3. Heart rate variability estimation 

One of the most useful applications of fECG is estimating fetal heart 
rate, which indicates the condition of the fetal heart and can identify 
several abnormalities. Additionally, we have estimated other metrics, 
including μRR, μHR, σHR, RMSSD and PNN50. The metrics shown in 
Table 5 indicate the performance of the proposed methodology. 

Except for the standard deviation of HR, all the metrics are reason
ably accurate. Moreover, a stable reactive fetal heart rate is typically 
between 120 and 160 bpm with a variability greater than 6 bpm 
(Rochard, 1976). In our case, the mean fetal heart rate is close to 129 ±
18 bpm, which is well within the normal heart rate range. 

4.4. Ablation studies 

Ablation studies hold immense significance in experimental 
research. They involve altering specific components or parameters 
within a system to assess the importance of each part. In this section, we 
conduct an ablation study on our newly proposed methodology, exam
ining its proposed loss function, as well as two other parameters: 
learning rate and the number of epochs. 

Proposed loss: In our proposed methodology, we introduced a 
weighted adversarial loss consisting of MSE loss, spectral loss, temporal 
loss, and power loss. This loss is very effective, especially for ECG sig
nals. According to Fig. 11(a), the proposed loss increased the PCC score 
of the extracted fECG to almost 10%. 

Learning rate: The learning rate is a very crucial hyperparameter in 
model training. In our study, we used different learning rates to find the 
most optimized result. For the best model (Resnet 13 blocks + Basic 
discriminator), we tried three different learning rates: 0.0001, 0.00001 
and 0.000001 with enough epochs to reach the maxima. A learning rate 
of 0.00001 works best compared to others as summarized in Fig. 11(b). 

Number of epochs: Generally, tuning the number of epochs can result 
in better fitness. In this study, we varied the number of epochs from 100 
to 300 and evaluated the extracted fECG on the validation set. 150 
epochs give better results than others, while 100 epochs seem to 
underfit, and 300 epochs seem to be overfitting as the PCC score de
creases significantly, as shown in Fig. 11(c). 

4.5. Computational complexity 

In the context of computational complexity analysis, we will describe 
the experimental setup used in conjunction with the complexity of our 
proposed model. Our experiments were performed on a cloud-based 
virtual machine, which featured an Intel Xeon processor with 4 cores 
and 8 threads running at 2.0 GHz. The virtual machine was equipped 
with 25 GB of RAM and a 16 GB NVIDIA Tesla T4 graphics card with a 
base frequency of 585 MHz. The implementation of our model utilized 
Python 3.8 as the programming language, and we employed PyTorch, 
Numpy, and Sci-kit Learn libraries to handle the network architecture, 
computation, and evaluation processes, respectively. 

Regarding the complexity of our proposed model, each generator 
contained 0.337 million trainable parameters, while each discriminator 
had 0.044 million trainable parameters. Consequently, the entire 
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network comprised a total of 0.762 million parameters. This setup 
allowed us to achieve remarkable efficiency and accuracy in our system. 
In our experimental setup, we successfully extracted 1740-second long 
fECG data from 4-channel mECG in a mere 73 s. This exceptional speed 
and performance make our proposed system highly suitable for real-time 
fECG extraction, providing significant advantages for various 
applications. 

5. Conclusion 

In this study, we have reconstructed Fetal ECG (fECG) from Mother 
ECG (mECG) using 1D CycleGAN and have measured heart rate and 
heart rate variability from the reconstructed signal. Traditional filtering 
methods are ineffective because mECG is frequently affected by baseline 
wandering, motion artifacts, power-line noise, uterine and muscle 
contraction, electrode connection, white noise etc. Our solution ach
ieves a comparable performance to state-of-the-art techniques by 
showing an excellent retainment of signal morphology with an average 
PCC and Spectral-Correlation score of 88.4% and 89.4%, respectively. 
We can detect fQRS of the signal with accuracy, precision, recall and F1 
score of 92.6%, 97.6%, 94.8% and 96.4%, respectively. Moreover, the 
generated signal can estimate heart rate and R-R interval with 0.25% 
and 0.27% error, respectively. The main contributions of our work are 
excellent retention of components of the whole signal, detection of fQRS 
with great accuracy and near-perfect determination of fetal heart rate. It 
can be used to reconstruct fECG signals from any mECG signals for non- 
invasive fetal cardiac diagnosis and heart-rate measurements. Although 
the proposed framework can estimate heart rate with very high accu
racy, the performance could be enhanced if the mECG signals were of a 
higher quality. One possible solution to this would be to create a dataset 
with similar protocols but with multiple expert annotations for ground 
truth fQRS positions (Modi, 2011). In the future, we may be able to use 
another binary classification model to choose correct or discard exces
sively noisy mECG signals. Furthermore, numerous post-processing ap
proaches, such as a refinement network, can be utilized to further 
improve the fECG output quality. 
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