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A B S T R A C T

Automated lumbar spine segmentation is very crucial for modern diagnosis systems. In this study, we introduce a 
novel machine-agnostic approach for segmenting lumbar vertebrae and intervertebral discs from MRI images, 
employing a cascaded model that synergizes an ROI detection and a Self-organized Operational Neural Network 
(Self-ONN)-based encoder-decoder network for segmentation. Addressing the challenge of diverse MRI modal
ities, our methodology capitalizes on a unique dataset comprising images from 12 scanners and 34 subjects, 
enhanced through strategic preprocessing and data augmentation techniques. The YOLOv8 medium model excels 
in ROI extraction, achieving an excellent performance of 0.916 mAP score. Significantly, our Self-ONN-based 
model, combined with a DenseNet121 encoder, demonstrates excellent performance in lumbar vertebrae and 
IVD segmentation with a mean Intersection over Union (IoU) of 83.66%, a sensitivity of 91.44%, and Dice 
Similarity Coefficient (DSC) of 91.03%, as validated through rigorous 10-fold cross-validation. This study not 
only showcases an effective approach to MRI segmentation in spine-related disorders but also sets the stage for 
future advancements in automated diagnostic tools, emphasizing the need for further dataset expansion and 
model refinement for broader clinical applicability.

1. Introduction

The spine is regarded as one of the most critical parts of the body, as 
it is responsible for upright posture, movement, and structural support. 
Besides its mechanical tasks, the spine protects the spinal cord, a 
neurological conduit that connects the brain and body. This complicated 
network of nerves allows voluntary control of physical motions and 

guarantees correct organ function. As a result, maintaining spinal health 
becomes a critical requirement for anyone trying to live an active and 
useful life. Anatomically, the spinal column comprises 33 tiny bones 
known as “vertebrae” piled on top of each other. A soft, gel-like cushion 
called an “Inter-Vertebral Disc” (IVD) sits between each vertebra, 
absorbing pressure and preventing the bones from grinding against each 
other. The vertebrae are numbered and can be divided into five distinct 
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regions from top to bottom: cervical, thoracic, lumbar, sacrum, and 
coccyx (Bogduk, 2005). An anatomical structure of the spine is shown in 
Fig. 1.

Lower back pain (LBP) is a prevalent condition that naturally occurs, 
particularly among adults, leading to restricted movement and impact
ing daily activities (Hoy, et al., 2014). The high incidence of degener
ative spinal disorders, notably among working-age individuals, results in 
substantial societal costs associated with treatment and disability 
(Fayssoux, Goldfarb, Vaccaro, & Harrop, 2010). Lumbar spinal stenosis 
(LSS) is identified as a primary cause of low back pain and one of the 
leading reasons for spine surgery (Deyo, et al., 2010). When confronted 
with symptoms of LBP, the initial course of action typically involves 
investigating spinal structural issues. Various medical imaging tech
niques, including x-rays, computed tomography (CT), magnetic reso
nance imaging (MRI), and positron emission tomography (PET), have 
been widely utilized over the past few decades for diagnosing spinal 
problems (Jeon & Kong, 2020; Sneath, Khan, & Hutchinson, 2022). 
Though CT and MRI are both very effective in detecting herniated discs 
and spinal stenosis for diagnosing infections or malignancies causing 
back pain, MRI is more sensitive and specific than conventional imaging 
techniques (Jarvik & Deyo, 2002). Specifically, MRI is considered more 
reliable for radiographic assessment of degenerative lumbar spinal ste
nosis (Alsaleh, et al., 2017).

Magnetic resonance imaging (MRI) is a noninvasive diagnostic pro
cedure that generates highly detailed pictures of nearly all internal 
structures within the human body, encompassing organs, bones, mus
cles, and blood vessels (Westbrook & Talbot, 2018). Unlike X-rays, MRI 
scanners generate bodily pictures by employing a powerful magnet and 
radio waves and do not generate ionizing radiation. Though the use of 
MRI scans can provide the referring clinician with accurate information 
about the spinal condition, diagnosing lower back pain can be a difficult 
and time-consuming process compared to X-rays.

Currently, the spinal surgeons and radiologist community rely on 

either fully manual or semi-automated techniques. They are required to 
identify each spine segment by analyzing numerous MR images and 
manually delineate any abnormal regions. For instance, the physician 
may need to examine MRI scans from various perspectives or use 
different imaging modalities in order to determine the extent of the 
lesion. Consequently, the task of analyzing MRI slices is problematic 
because it requires simultaneously examining and analyzing extensive 
multimodal data to determine the location and morphology of the 
lesion. Furthermore, it is seen that the clinical diagnosis of MRI often 
shows notable differences among observers. This is because experienced 
radiologists, who rely on their own expertise, generate different radio
logical grading results even when using the same grading criteria (Lee, 
et al., 2010). An automated diagnostic system has the capability to 
address both issues and aid doctors in analyzing MR images efficiently 
and precisely.

Segmenting MR images has several challenges associated with: 

1. Due to the low contrast of MRI images, the boundary between the 
spine and surrounding tissues is usually indistinct.

2. The shape of the vertebrae or IVDs varies greatly and may fluctuate 
dramatically across patients.

3. Variation among slices of the same MRI scan is too significant to 
create a single generalized approach for all distinct slices.

4. Because of technology differences, inter-scanner variability may 
arise.

5. Intra-scanner variability can occur due to mobility, physiological 
state, medication, time of day, and other factors (Wittens, et al., 
2021).

Finally, the presence of foreign bodies, irrelevant organs, and noise 
adds another layer of challenge to this task.

To address the problems of spinal MRI interpretation, a range of 
computer-aided diagnostic strategies have been investigated for possible 

Fig. 1. Overview of the vertebral column. (a)part of the spine that contains vertebrae and IVD (highlighted in green), and (b)the structure of vertebrae and IVD 
(highlighted in green) (Frost, Camarero-Espinosa, & Foster, 2019). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
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application throughout the last decade. These applications include 
computer vision algorithms to segment or locate vertebral bodies and 
discs, such as histogram-oriented gradients (Ghosh, Malgireddy, 
Chaudhary, & Dhillon, 2012; Lootus, Kadir, & Zisserman, 2014; A. B. 
Oktay & Akgul, 2013), probabilistic models (M. S. Aslan, Ali, Rara, & 
Farag, 2010; Bejnordi, et al., 2017; Corso, Alomari, & Chaudhary, 2008), 
and GrowCut (Egger, Nimsky, & Chen, 2017). These models mainly 
localized or detected the target parts and were very complex, time- 
consuming, and lacked performance. However, the scenario changed 
after the burgeon of deep learning. Notably, the proposal of U-net 
(Ronneberger, Fischer, & Brox, 2015) brought about a revolution in 
medical image segmentation tasks. Some other networks based on U-net, 
such as Unet++ (Zhou, Siddiquee, Tajbakhsh, & Liang, 2019), nnU-net 
(Isensee, et al., 2018), Attention U-net (Oktay, et al., 2018), and Tran
sUnet (Chen, et al., 2021) worked very well as a generalized segmen
tation model. Meanwhile, some other approaches like PSPNet (Zhao, 
Shi, Qi, Wang, & Jia, 2017), DeepLabV3 (Chen, Papandreou, Schroff, & 
Adam, 2017), and PAN (Li, Xiong, An, & Wang, 2018) showed their 
ability to achieve outstanding performance in segmentation tasks. 
Hence, deep learning has also become the predominant approach in the 
spine segmentation domain. A number of research have already been 
conducted in lumbar MR image segmentation tasks based on deep 
learning approaches (Han, Wei, Mercado, Leung, & Li, 2018; Wang, 
Jiang, Yang, Li, & Yang, 2022; Whitehead, Moran, Gaonkar, Macyszyn, 
& Iyer, 2018; Yilizati-Yilihamu, Yang, Yang, Rong, & Feng, 2023; Zhang, 
Xiao, Liu, Li, & Li, 2020) and some of them achieved state-of-the-art 
performance. However, almost every one of the studies primarily ex
amines MRI data acquired from a single MRI scanner, disregarding the 
differences between scanners, and so lacks broad application. The ma
jority of the studies only focus on segmenting the entire spine, spinal 
canals, or discs, which restricts their practical usefulness and potential 
for further development. Importantly, none of the previous research 
could attain a result comparable to human performance and can be 
effectively applied in practice.

In this paper, we propose a novel approach based on a Self-organized 
Operational Neural Network (Self-ONN) that addresses all the issues 
stated above to realize an automatic MR image segmentation system that 
can work in a machine-agnostic way to better generalize across several 
scanners or patients. The main contributions of our work are listed 
below: 

• We proposed a machine-agnostic approach that provides a general
ized outstanding performance on images from a variety of MRI 
scanners.

• Our proposed system can accurately segment individual lumbar 
vertebral bodies and intervertebral discs, which is the first of its kind 
to the best of our knowledge.

• Despite segmenting vertebral bodies and IVDs individually, the 
proposed framework achieves a comparable performance to the 
state-of-the-art studies segmenting them non-exclusively.

This paper is divided into five sections. In this section, we provide a 
brief explanation of the study’s motivation and the challenges present in 
automated MRI segmentation. Section 2 will look further at comparable 
works and their contributions and limitations. The following Section 
presents a conceptual framework that underlies our proposed technique. 
The results of this research are summarized in Section 4. Finally, Section 
5 includes the conclusion and future hopes.

2. Related works

Researchers have been working on lumber vertebrae and interver
tebral disc segments for quite some time. Nagel et al. (Naegel, 2007) 
proposed a mathematical morphology-based method for anatomically 
labeling vertebrae from 3D CT-scan images. Ghosh et al. (Ghosh & 
Chaudhary, 2014) used a two-stage algorithm to detect the spinal cord 

with the Hough transform (Deans, 1981) and then extract the inter
vertebral discs using an adaptive window. A similar approach was 
proposed by Bhole et al. (Bhole, Kompalli, & Chaudhary, 2009) where 
they detected the centers of the discs from T1 and T2 weighted sagittal 
and axial images. Aslan et al. (Aslan, Shalaby, Ali, & Farag, 2015) 
developed a novel probability energy function that incorporates in
tensity, spatial interaction, and shape information. They then tuned this 
function to get the best possible segmentation. These studies answered 
the primary questions and opened the door for further research in this 
field. However, most of them presented manual or semi-automatic 
processes that still required expert supervision to operate. The results 
were also not very promising to be used in real life.

The revolution in computing power made it possible to work with 
deep neural networks which had a significant impact in lumbar seg
mentation from MR images as well. Spine-GAN, as proposed by Han 
et al. (Han, et al., 2018), used two different networks: a generator and a 
discriminator network to segment different vertebrae and IVDs from T1 
and T2 weighted MR images. They achieved a very good pixel-level 
accuracy of 96.2 % and a dice coefficient of 87.1 % in their six-class 
segmentation task. Whitehead et al. (Whitehead, et al., 2018), used 
four simultaneous FCN networks trained using images at different scales 
to utilize spatial features at different dimensions. They used MR images 
from the UCLA PACS database and hand-annotated the lumbar vertebrae 
and IVDs, but they did not differentiate between different vertebrae or 
discs. In another study conducted by Zhang et al. (Zhang, et al., 2020), 
an adversarial network was used to localize and segment the vertebral 
body. They proposed a novel XOR loss for the discriminator and ach
ieved a commending dice score of 95.3 %. However, their work 
concentrated only on segmenting the vertebral body, not the interver
tebral discs.

U-net seemed to be a very popular choice in this task as several works 
were done based on these networks (Dolz, Desrosiers, & Ben Ayed, 2018; 
Liu, Deng, & Liu, 2021; Lu, Li, Yu, Zhang, & Yu, 2023; Wang, et al., 
2022; Wang, Xiao, & Tan, 2023; Zhang, et al., 2021). Zhang et al. 
(Zhang, et al., 2021) aimed to expedite the spine segmentation process 
using a BN-Unet architecture and claimed to increase the speed more 
than five times compared to the current Unet architecture. In exchange, 
they segmented the whole spine as a single instance instead of different 
parts from T1 and T2 sagittal MR images from 22 subjects. The accuracy 
and sensitivity obtained were 94.5 % and 84.7 %, respectively. Wang 
et al. (Wang, et al., 2022) modified the attention U-net by adding 
attention gates at the end of the encoder and decoder parts. They also 
changed the down-sampling and residual layers to get a sensitivity of 94 
% and a dice score of 95 %.

Apart from variants of U-net, Yilihamu et al. (Yilizati-Yilihamu, 
et al., 2023) proposed a scene-aware fusion network (SAFnet) that ex
tracts features at three levels using five residual blocks, and each layer is 
associated with CBR processing. The different levels of features were 
then aggregated using a multiscale fusion module. They used a total of 
172 MR images and segmented them into 17 classes of vertebrae and 
IVDs to achieve an average ice coefficient of 79 %.

The common lack of all the research was the inapplicability of using 
their approaches in a generalized experimental setup. Most of the 
datasets included MR images from a single machine operating in a fixed 
set of parameters, including repetition time, echo time, flip angle, etc. 
However, this will not be applicable in practice where the machine and 
operating setup will be different. Another drawback is the objective, as 
most of the studies aimed to extract all the vertebrae or IVDs instead of 
segmenting each of them separately. The performance should also be 
improved in order to be deployed in real life. In this paper, our goal is to 
answer all the challenges stated earlier by designing a generalized 
machine-agnostic framework that can segment different lumbar verte
bral bodies and intervertebral discs accurately and efficiently so that it 
can be deployed in real life.
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3. Methodology

3.1. Overview of the framework

One of the significant properties of the dataset is the annotation is 
done only on lumbar vertebrae and IVDs even though other parts of the 
spine, including the thoracic, sacrum, or coccyx, might be present in the 
scan. To address this issue, we propose a cascaded approach, including a 
region of interest (ROI) extraction and a segmentation model to effi
ciently segment different lumbar parts from MR images in a machine- 
agnostic way. We used a YOLOv8 (Jocher, Chaurasia, & Qiu, 2023) 
detection model for extraction of the lumbar spine followed by a Self- 
ONN(Kiranyaz, et al., 2021) based encoder-decoder architecture for the 
segmentation task. A high-level overview of our used framework is given 
below: 

• The raw MR image slices were extracted into images and underwent 
extensive preprocessing.

• The manually annotated segmentation masks from different classes 
were unified into a single mask using the STAPLE algorithm 
(Warfield, Zou, & Wells, 2004).

• A subject-preserved cross-validation set is generated for a fair eval
uation of the proposed pipeline.

• The ROI from the preprocessed images was extracted using the 
YOLOv8 model.

• The extracted ROIs were segmented into nine different classes using 
the novel Self-ONN-Unet model.

A flowchart of the overview of our proposed framework is provided 
in Fig. 2.

3.2. Preprocessing

We used a multi-scanner and multi-modal dataset (Khalil, et al., 
2022) for this study. This dataset contains MRI scans in different mo
dalities (including T1, T2, STIR, and Dixon) from 12 different scanners. 
Specific modalities in MRI are customized to emphasize specific tissue 
properties. T1-weighted MRI has a precise anatomical resolution, mak
ing it optimal for viewing typical structures and bleeding. On the other 
hand, T2-weighted MRI is highly effective in detecting edema and dis
ease due to its heightened sensitivity to water content. STIR (Short Tau 
Inversion Recovery) is mostly used to suppress fat signals in order to 
enhance the visibility of fluid and inflammation. The Dixon approach 
facilitates the differentiation of fat and water signals. Because of their 
characteristic usage, corresponding images also have different proper
ties. For example, fat appears bright, water and cerebrospinal fluid (CSF) 
appear dark in T1-weighted MRI, while water and CSF appear bright and 
fat appear darker in T2-weighted MRI. The difference between various 

modalities is illustrated in Fig. 3:
Because of these differences in the image characteristics among 

different modalities, the model needs a considerable number of scans to 
learn these properties. Nevertheless, T2, STIR, and Dixon modalities had 
very few scans available in the dataset. Hence, we used only the T1- 
weighted MRI for the vertebral body and intervertebral disc segmenta
tion. However, we utilized other modalities in the ROI extraction stage 
in our cascaded framework.

A common issue regarding volumetric imaging is the variability 
across different slices. In most cases, the first and last few slices do not or 
barely contain information about the target tissue or organ, as shown in 
Fig. 4. While this is completely a typical scenario, this occurrence needs 
careful attention while using deep learning systems.

As the figure shows, the spine is visible in most of the slices except for 
the first and last slices. As we inspected different MRI scans, we found 
the first and last few slices usually do not have a clear view of the spine. 
Hence, we removed 20 % of slices from the beginning and end to remove 
ambiguous images. The value of 20 % was chosen by heuristically 
investigating the dataset. Still, there might be other noisy images, and it 
is the responsibility of the ROI extractor model to detect and remove 
those images using the confidence threshold and the detected non- 
existent ROI. We also applied image processing techniques to enhance 
the color and contrast as well as the differentiability of the images. At 
first, a soft Gaussian blur was applied to the images to remove noise, 
followed by CLAHE (Reza, 2004) to improve the equalization of the 
histogram of the MR images.

After modality selection and slice removal process, the number of 
samples became too small. So, we opted for data augmentation in both 
stages of the pipeline. However, the augmentation types were different 
depending on the related task. For the ROI extractor, both geometric 
(scale, translate, mosaic) and non-geometric (median blur, equalization) 
augmentations were used, whereas only geometric (translate, rotate, 
shear) augmentations were applied for segmentation. A summary of our 
preprocessing algorithm is given in Fig. 5:

3.3. ROI extraction

We used the YOLOv8 model for the ROI extraction task. YOLO (You 
Only Look Once) was originally proposed by Redmon et al.(Redmon, 
Divvala, Girshick, & Farhadi, 2016). YOLO employed a distinct meth
odology to utilize a single neural network to process the entire image, 
bringing revolutionary changes in the object detection field. There has 
been a collaborative improvement of this model by different researchers, 
YOLOv8 being one of their latest additions. The main improvement of 
YOLOv8 is the transition from a traditional anchor-based approach to an 
anchorless detection system. Anchors solved a few major problems in 
object detection, including the detection of same-center objects and 
improving the bounding box area. The architecture of YOLOv8 can be 

Fig. 2. Overview of the proposed framework
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divided into two major parts: backbone and head. The backbone is a 
modified darknet architecture that extracts information from the image 
at different spatial levels, and cross-stage partial bottlenecks are added 
to enhance the information flow between layers. The head consists of 
‘Conv’ (2D convolutional block with Sigmoid Linear Unit (SiLU) acti
vation (Elfwing, Uchibe, & Doya, 2018)) and ‘C2f’ (partial bottlenecks 
with two convolutional layers) blocks to predict bounding boxes and 
class probabilities. In this study, we used the medium-depth model of 

YOLOv8 (YOLOv8m) with almost 25.9 million parameters to extract the 
lumbar part of the spine from the MR image. A simplified architecture of 
YOLOv8 is presented in Fig. 6:

3.4. The notion of Self-ONN

Both Multi-Layer Perceptrons (MLPs) and Convolutional brain Net
works (CNNs) have a common drawback: they depend on a homoge
neous network structure with linear neuron models, which does not 
accurately capture the variety and intricacy of biological neural systems. 
Mathematically, the output of the kth neuron of the l th layer of CNN, 
denoted by xl

k can be defined by: 

xl
k = bl

k +
∑Nl− 1

i=0
xl

ik (1) 

where, bl
k is the bias corresponding to the neuron and xl

i is the output of i 
th neuron of l th layer of the CNN. The Operational Neural Networks 
(ONNs) (Kiranyaz, et al., 2021) tackle this issue by implementing 
diverse and complex network models including a varied range of oper
ators per neuron, resulting in a more adaptable framework. ONNs’ core 
principle goes beyond relying just on linear convolutions within con
volutional neurons. They do this by including nodal and pool operators. 
These additions include the operational layers and neurons, while still 
maintaining two fundamental limitations inherited from traditional 
CNNs: weight sharing and restricted (kernel-wise) connection. Fig. 7
depicts the three operational layers and the kth neuron with 3 × 3 

Fig. 3. Variability among different types of scans: (a) T1 weighted non-contrast-enhanced, (b) T1 weighted contrast-enhanced, (c) T2 weighted Dixon water 
enhanced, (d) T2 weighted Dixon, (e) T2 weighted Dixon fat enhanced. All images are taken from the 6th slice of MRI scans of the same patient using a Philips 
Achieva scanner.

Fig. 4. Inter-slice variability, (a) 1st slice, (b) 4th slice, (c) 8th slice, (d) 15th slice of and T1 weighted non-contrast scan using a Philips Achieva scanner.

Fig. 5. MRI preprocessing techniques used in this study.
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kernels in an ONN. The input map of the kth neuron in the current layer 
of an ONN represented as xl

ik, is obtained by pooling (Pl
k) the final output 

mappings, , yl− 1
i , of the neurons in the previous layer that have been 

processed with their corresponding kernels, wl
ik: 

xl
ik(m) = Pl

k
(
ψl

k
(
wl

ik(r), y
l− 1
i (m + r)

) )k− 1
r=0 (2) 

ONNs still have some limitations as they are constrained by the limited 
number of operators which has a predetermined quantity of manually 
designed nodal operators. Self-organized Operational Neural Networks 
(Self-ONNs) expand on the concepts of ONNs by including generative 
neurons that have the ability to adjust and enhance the nodal operator of 
each link while undergoing training thus overcoming the limitations of 
ONNs. Hence, Self-ONNs do not necessitate a previously determined 
collection of operators or an iterative search procedure to find the most 
optimal operators. Instead, each neuron has the ability to generate 
various combinations of nodal operators, which enables a more adapt
able and potent modeling capacity. This is accomplished by subjecting 
every generative neuron of a Self-ONN model to use a composite nodal 

operator that can be iteratively created during backpropagation training 
without any restrictions. The composite operator can be represented as a 
Taylor approximation of order Q, where Q represents the q-order of the 
polynomial. For instance, the composite nodal operator of the k th 

generative neuron in the l th layer can be expressed as: 

ψl
k

(
wl(Q)

ik (r), yl− 1
i (m + r)

)
=

∑Q

q=1
wl(Q)

ik (r, q)
(
yl− 1

i (m + r)
)q (3) 

where, wl(Q)

ik is the K × Q dimensional kernel matrix between the ith 

neuron of the (l − 1) th layer to the kth neuron at the current (l th) layer, 
yl− 1

i is the output map of the i th neuron at the (l − 1) th layer. Now, if the 
contribution of the ith neuron in generating the feature map from the 
(l − 1) th layer to the l th layer is termed as xl

ik, Eq. (3) can be alternatively 
expressed and simplified as, 

xl
ik =

∑Q

q=1
Conv

(
wl(Q)

ik ,
(
yl− 1

i
)q

)
(4) 

Utilizing Equation (4), this procedure can be executed by performing 

Fig. 6. A simplified architecture of YOLOv8 (Up Upsampling layer, Cat: Concatenation, Conv: single convolution block, C2f: double convolution block with partial 
bottlenecks).

Fig. 7. The illustration of calculating the kth neuron of a CNN (left) and an ONN (right).
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convolution operations Q times. Ultimately, the formulation for the 
output of a single neuron can be expressed as: 

xl
k = bl

k +
∑Nl− 1

i=0
xl

ik (5) 

We can even use Self-ONN like a conventional CNN by setting Q = 1 
which makes Self-ONN a more generalized version of CNN.

3.5. Segmentation Model

We propose a novel Self-ONN-based encoder-decoder network as the 
segmentation model of our system. A DenseNet121(Huang, Liu, Van Der 
Maaten, & Weinberger, 2017) architecture is used as the encoder which 
is responsible for extracting the features from the image and Self-ONN- 
Unet as the decoder to generate the segmentation masks.

In DenseNet, layers are densely connected to all the previous layers 
through dense blocks. As a result, any layer receives a concatenation of 
the feature maps of all its preceding layers. DenseNet is comprised of 
three distinct types of blocks. The initial block is the convolution block, 
which consists of a 3 × 3 and a 1 × 1 convolution as well as a skip 
connection to concatenate the output of the previous layer. The second 
one is the dense block, which is composed of concatenated and densely 
connected convolution blocks. DenseNet’s characteristic component is 
the dense block. The final block is known as a transition block that links 
two contiguous dense blocks. Due to the uniformity of feature map 
proportions within the dense block, the transition layer performs a 
dimension reduction on the feature map.

In the Self-ONN-based decoder, each Self-ONN block is composed of 
a Self-ONN layer as the key component, a max pooling layer to select the 
most important features, and a tanh activation function to add non- 
linearity. If we go deeper, the Self-ONN layer consists of a number of 
generative neurons and a dropout layer. There are a total of 5 Self-ONN 
blocks in our proposed architecture and each of them is connected to the 
corresponding encoder block with a skip connection. Unlike the tradi
tional Unet architecture, we did not use any bottleneck layer between 
the encoder and the decoder as the DenseNet121 itself is very deep. A 
visual representation of our proposed architecture is provided in Fig. 8.

4. Result

4.1. Dataset description

The “Multi-scanner and multi-modal lumbar vertebral body and 
intervertebral disc segmentation database” (Khalil, et al., 2022) stands 
out as one of the few publicly available datasets that integrates data 
from a variety of machines and modalities to capture lumbar MRI data. 
This dataset comprises information from 12 distinct scanners and en
compasses eight different types of images collected from 34 patients 
(mean age: 60.4 ± 15.2 years, age range: 30.0–88.1 years, 58.8 % fe
males). The patients were categorized based on five clinical indications: 
1) lower back pain (LBP), 2) follow-up imaging after resection of a spinal 
tumor, 3) spinal metastases, 4) spondylodiscitis, and 5) spinal fracture. 
Only sagittal images covering the lumbar spine were included in the 
dataset, and the characteristics and parameters of the scanners 
(including repetition time (TR)/echo time (TE), field of view, and 
acquisition time) varied across the different types of scanners. Following 
MR image acquisition, manual segmentation was conducted in the 
sagittal plane by a medical professional for each lumbar vertebral body 
(L1, L2, L3, L4, L5) and intervertebral disc (L1-2, L2-3, L3-4, L4-5). An 
exemplar segmented image from the dataset is illustrated in Fig. 9.

Unfortunately, corrupted data was present in the dataset. 53 MRI 
scans out of 211 were corrupted, which comprises almost 25 % of the 
data. A statistical summary of the dataset after removing the corrupted 
data is presented in Table 1:

The dataset contained 8 different types of MR images including T1 
(contrast and non-contrast), T2, STIR, and Dixon (T2, fat and water- 
saturated) scans. The number of MRI scans and the number of subjects 
against each scan type is shown in Table 2. It should be noted that each 
subject can be scanned multiple times on multiple occasions.

4.2. Dataset preparation

ROI extraction: We opted for a rather simple train-validation-test split 
to train the ROI extraction part. As we had a total of 34 subjects’ data, we 
randomly selected four subjects for the ROI extraction task, and the rest 
of the 30 subjects’ data were kept for the segmentation task. Two of the 
four chosen subjects were used in the training set, and one was used for 
the validation and test sets. For the low amount of data, we selected all 
types of scans including T1, T2, and Dixon, and all the slices from a 

Fig. 8. The detailed architecture of the proposed segmentation model.
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single scan for the ROI extraction task. Due to the various types of scans 
and scanners, the number of scans and slices was not uniform. An 
overview of the prepared dataset is given in Table 3.

Segmentation: For the segmentation model, we selected only T1 scans 
from different scanners and applied heuristic MRI slice removal to 
remove slices that do not contain informative images. Later, we applied 
the ROI extractor to extract the lumbar part of the spine from the whole 
MRI slice before preparing a subject-wise 10-fold cross-validated data
set. One goal for this study is to make our proposed model learn the 
variability of different subjects, and machines perform well in unseen 
test datasets no matter which subject or scanner the data came from. The 
30 subjects’ data kept for segmentation were used to create a 10-fold 
cross-validation so that no subject would be present in different folds. 
Therefore, we ensured the integrity of our model to generalize data from 

different modalities and prevent data leaking. A summary of the amount 
of data is provided in Table 3. As the segmentation dataset did not use all 
the scan types and applied heuristic MRI slice removal, the number of 
scans and slices was reduced.

4.3. Evaluation metrics

Evaluation metrics are crucial for measuring the performance of 
deep learning models and facilitating comparisons across different ap
plications. We employed a range of commonly utilized detection and 
segmentation metrics to assess the performance of our models across 
different experimental levels.

Accuracy (Acc): Accuracy quantifies the model’s overall capacity to 
predict the correct output. This metric represents the ratio of correctly 
predicted observations to the total number of observations. Denoting 
true positives, false positives, true negatives, and false negatives as TP, 

Fig. 9. Segmented images from the dataset. (a) captured using a Philips Achieva scanner, and (b) captured using a Siemens Amira scanner. The segmentation masks 
are shown in the overlay.

Table 1 
Overall statistics of the dataset.

Number of scans 156

Number of subjects 34
Mean age 60.4
Number of scanners 12
Number of scan types 8
Number of slices 2692

Table 2 
Data statistics for each type of scan.

Scan type Number of scans Number of subjects

T1 non-contrast 54 32
T1 contrast-enhanced 27 21
T1 fat-saturated 1 1
T2 7 7
STIR 3 3
Dixon T2 22 19
Dixon Fat 21 18
Dixon Water 21 19

Table 3 
Summary of the data split for the cascaded task.

Task Split Number 
of 
subjects

Number 
of 
distinct 
scanners

Number 
of 
selected 
scans

Number 
of 
selected 
slices

ROI 
Extraction

Train 2 3 9 160
Test 1 2 6 104
Validation 1 2 9 147
Total 4 5 24 411

Segmentation 1 3 3 9 97
2 3 4 8 96
3 3 3 9 96
4 3 2 6 68
5 3 4 6 69
6 3 3 6 71
7 3 1 5 57
8 3 3 6 64
9 3 5 10 131
10 3 5 8 89
Total 30 12 73 838
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FP, TN, and FN, respectively, accuracy can be defined as: 

Accuracy, Acc =
TP + FP

TP + FP + TN + FN 

Precision (Pr): Precision quantifies the proportion of correct positive 
predictions out of all positive predictions, thereby providing useful in
sights into the model’s ability to reduce false positives. 

Precision, Pr =
TP

TP + FP 

Sensitivity (Se): Sensitivity, sometimes referred to as recall or true 
positive rate, refers to a model’s ability to completely identify all posi
tive cases in a given dataset. 

Sensitivity, Se =
TP

TP + FN 

Intersection over Union (IoU): Intersection over Union (IoU) calculates 
the amount of overlap between the predicted bounding box or 
segmented region and the ground truth bounding box or annotated. 
Mathematically, IoU is computed by dividing the intersection of the 
predicted and ground truth areas by their union, expressed as: 

IoU =
Areaofintersection

Areaofunion
(12) 

Mean average precision (mAP): Mean average precision (mAP) offers a 
consolidated estimate of a model’s performance across different levels of 
precision and recall. To comprehend the nature of this trade-off, Preci
sion-Recall curves are usually plotted, and average precision (AP) for a 
single class is calculated by the area under this precision-recall curve. If 
average precision is denoted by AP and the total number of classes is N, 
it can be shown mathematically, 

Mean average precision,mAP =
1
N
∑n

i=1
APi (13) 

Usually, mAP is calculated at a fixed IoU threshold and for different 
thresholds, the calculated mAP will be different which makes it harder to 
compare between mAP s with different thresholds. A standard procedure 
is to calculate the mAP at different thresholds from 0.5 to 0.95 with an 
increment of 0.05 and take the average of all the calculated mAPs. This is 
known as mAP0.5 : 0.95. 

mAP(0.5 : 0.95) =
1
10

×
∑0.95

t=0.5
mAP : t 

Dice similarity coefficient (DSC): The Dice Similarity Coefficient, often 
known as the Dice score, measures the similarity between two sets that 
overlap. It can be calculated using the following formula: 

DSC =
2 × |X ∩ Y|
|X| ∪ |Y|

(14) 

4.4. Experimental setup

The experiments in this study were conducted using a cloud-based 
computing environment equipped with high-performance GPUs. This 
choice of environment provided us with the computational resources 
needed to efficiently train and evaluate our deep-learning model on a 
sizable dataset of pediatric respiratory sounds. Technical specifications 
of the computing setup are given in Table 4:

4.5. ROI extraction performance

The result of ROI extraction for different variants of the YOLOv8 
network is provided below in Table 5:

The YOLOv8-medium model (with a depth multiplier of 0.67 and 
width multiplier of 0.75) achieved the best result with mAP(0.5 : 0.95)
of 0.916, mAP : 0.5 of 0.993 which signifies the ability of the model to 

accurately extract the lumbar spine even in higher threshold re
quirements. Three sample predictions of the ROI extraction system are 
given in Fig. 10.

4.6. Segmentation performance

Our proposed Self-ONN-based decoder produced an excellent per
formance on the lumbar vertebra and IVD segmentation compared to 
other state-of-the-art models we tried. The average result of the 10-fold 
cross-validation is given below for different architectures in Table 6:

Our proposed Self-ONN-Unet decoder combined with the Dense
Net121 encoder achieved the best performance among others, with a 
mean IoU score of 83.657 % and dice score of 91.032 %. The qualitative 
result is shown in Fig. 11. Detailed qualitative results from multiple 
patients are shown in Supplementary Fig. 1S-3S.

A comparison of our proposed model with other state-of-the-art ap
proaches in MRI image segmentation is discussed in Table 7:

Since our approach to segment each lumbar vertebral body and IVD 
individually is the first one to the best of our knowledge, it is hard to 
compare it with similar studies. In addition, most of the studies used a 
private dataset and did not mention all the related metrics, which makes 
it even harder to compare. Nevertheless, our proposed method per
formed similarly or even better compared to a few studies that only 
segmented the whole spine or all vertebral bodies and IVDs as a single 
task. (Whitehead, et al., 2018) achieved a DSC of 86.5 % on vertebrae 

Table 4 
Technical specifications of the computing system.

Component Specification

CPU Dual-core Intel Xeon Processor (2.2 GHz)
GPU NVIDIA Tesla T4 GPU (16 GB VRAM)
RAM 25 GB
Storage 120 GB SSD
Operating System Ubuntu 22.04 LTS
Software Environment Python 3.9, Torch 1.13.1, CUDA 11.1

Table 5 
ROI extraction performance of different models.

Model Reference Precision Sensitivity mAP:0.5 mAP:0.5:0.95

YOLOv5n (Jocher, 
2022)

0.877 0.89 0.939 0.692

YOLOv5m (Jocher, 
2022)

0.894 0.888 0.943 0.712

YOLOv6n (Li, et al., 
2022)

0.901 0.917 0.946 0.75

YOLOv6m (Li, et al., 
2022)

0.916 0.917 0.959 0.772

YOLOv6 
v3.0 s

(Li, et al., 
2023)

0.968 0.845 0.93 0.789

YOLOv6 
v3.0 m

(Li, et al., 
2023)

0.971 0.887 0.959 0.815

YOLOv6 
v3.0 l

(Li, et al., 
2023)

0.971 0.882 0.956 0.8

YOLO- 
NAS-s

(deci.ai, 
2023)

0.93 0.915 0.966 0.822

YOLO- 
NAS-m

(deci.ai, 
2023)

0.946 0.92 0.982 0.855

YOLOv8n (Jocher, 
et al., 
2023)

0.946 0.97 0.977 0.809

YOLOv8m (Jocher, 
et al., 
2023)

0.991 0.965 0.993 0.916

YOLOv8l (Jocher, 
et al., 
2023)

0.97 0.953 0.978 0.802

YOLOv8x (Jocher, 
et al., 
2023)

0.965 0.941 0.966 0.78
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and 83.2 % on discs, (Han, et al., 2018) achieved a DSC of 87.1 % and 
sensitivity of 86 %, (Zhou, et al., 2020) achieved a mean DSC of 84.35 % 
across two raters, (Zhang, et al., 2021) achieved a sensitivity of 84.76 %, 
all of which are lower than our achieved DSC of 91.03 % and sensitivity 
of 91.44 % though our proposed system segments each part individually. 
(Zhang, et al., 2020) achieved a DSC of 95 %, but they only segmented 
the vertebrae, not the IVDs. (Wang, et al., 2022) They also achieved a 
better DSC (95.01 %) but did not segment the vertebrae and IVDs 
separately. (Yilizati-Yilihamu, et al., 2023) had segmented a large 
number of vertebrae and IVDs individually, but their obtained DSC 
(79.46 %) is pretty much lower compared to our result. Finally, the only 
study that used the same dataset similar to ours is (Kim, et al., 2024). 
They only segmented the whole IVD, but their achieved DSC and 
sensitivity are very close compared to the performance of the proposed 
system. Therefore, it is difficult to compare our proposed framework to 

similar state-of-the-art methods, our study offers excellent performance 
in this field.

4.7. Ablation study

While designing our model, we came up with different ideas and 
concepts to experiment with. While some of them perform very well, not 
all of them do so. In every system, we need to evaluate the contribution 
of the features and discard the unnecessary ones. This systematic way in 
which the components of a machine learning framework are typically 
deleted or replaced to determine how these changes affect the perfor
mance is called an ablation study. In this work, we performed a number 
of ablation tests to remove the redundant parts from the system.

Ceiling Analysis: To assess the upper-bound performance of the 
cascaded model, we conducted a ceiling analysis by providing ground 

Fig. 10. Sample predictions of the ROI extractor part of the proposed framework.

Table 6 
Segmentation performance of different models (metrics are average of 10 folds).

Encoder Decoder Precision Sensitivity Accuracy Mean 
IoU

DSC

DenseNet121 Unet 86.98 ± 1.2 90.06 ± 1.3 99.8 ± 0.1 79.28 ± 1.9 88.33 ± 1.8
ResNet50 Unet 86.22 ± 1.2 89.66 ± 1.4 98.3 ± 0.2 78.32 ± 2.3 87.57 ± 2.0
Efficientnet-b1 Unet 84.66 ± 1.1 88.53 ± 1.3 98.07 ± 0.1 76.4 ± 2.1 86.09 ± 1.9
DenseNet121 Unet++ 85.89 ± 1.1 91.57 ± 0.9 98.88 ± 0.2 78.18 ± 1.8 87.68 ± 1.9
DenseNet121 Self-ONN-ResUnet 84.99 ± 1.0 86.31 ± 1.1 98.54 ± 0.2 74.9 ± 2.3 85.41 ± 2.1
DenseNet121 Self-ONN-Unet 90.71 ± 0.9 91.44 ± 1.1 99.78 ± 0.1 83.66 ± 1.6 91.03 ± 1.2

Fig. 11. Two sample predicted segmentations taken from a Philips Ingenia (left) and Philips Achieva scanner (right).
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truth ROIs directly to the segmentation model, bypassing the ROI 
extractor. This experiment allowed us to determine the ideal perfor
mance achievable by the segmentation model if the ROI detection stage 
were perfect, isolating the impact of ROI extraction errors on the overall 
cascaded system. According to the ceiling analysis, we obtained a Dice 
score, sensitivity, and mean IoU of 93.73 %, 93.64 %, and 86.66 %, 
respectively, which is a significant boost compared to the cascaded 
model. This performance increase also highlights the segmentation 
model’s potential when supplied with accurate ROI inputs and suggests 
that the current cascaded model’s performance is partly constrained by 
inaccuracies in the ROI extractor.

The cascaded model: The cascaded model was a key factor in the 
excellent performance of the proposed system. We also tried our pro
posed segmentation model both with and without the ROI extraction 
model and found that the extracted ROI helped the model to improve its 
performance. Quantitively, using the cascaded network, the Dice score 
and the IoU increased to almost 7 % and 10 %, respectively.

Number of decoder blocks: Another critical factor was the number of 
decoder blocks. As the encoder and decoder blocks are connected with 
skip connections, an increase in decoder blocks also results in an 
increment in the number of encoder blocks, which may subsequently 
cause an overfitting change. We experimented with a number of 
different architectures varying the number of decoder and encoder 
blocks and found that the architecture works best if we use five decoder 
blocks.

Preprocessing pipeline: Preprocessing is an essential step in preparing 
the input data to enhance model performance. We experimented with 
different preprocessing techniques to evaluate their impact on the 
overall system. Specifically, we compared the performance of our model 
using raw images, with all preprocessing steps without augmentation 
and with all preprocessing steps with augmentation. The model can 
hardly perform well using raw images. The model performance is 
boosted significantly after including the heuristic slice removal, 
Gaussian blur, and CLAHE. Finally, the performance reaches its peak if 
we use augmentation techniques.

Learning rate: The learning rate stands as a pivotal hyperparameter in 
model training. Within our study, we explored various learning rates to 
ascertain the most optimized value for achieving superior performance 
alongside expedited training. Through the ablation study, we deter
mined that learning rates of 0.1 and 0.01 were excessively large, 
impeding convergence. In contrast, a learning rate of 0.001 emerged as 

the optimized choice.
The results of the ablation studies are compiled in Table 8.

5. Conclusion

In this study, we have taken a machine-agnostic approach to auto
matically segment lumbar vertebrae and intervertebral discs from MR 
images using our proposed model. Traditional segmentation methods 
are often found to underperform in this task because of the extremely 
low contrast of the images and intra-scanner or inter-scanner variability 
of the produced images. Our solution achieves excellent performance by 
showing excellent robustness to segment different types of MR images 
and achieving a DSC, IoU, and pixel accuracy of 91.03 %, 83.66 %, and 
99.78 %, respectively. We hope that this approach will go a long way in 
automating diagnosis for a number of spine-related disorders and 
diseases.

Our study still has some limitations, including the lack of enough 
data, potential challenges in generalization to different modalities of 
images, and segmentation of other parts of the spine. To address these 
limitations, future research should focus on expanding and utilizing the 
dataset to ensure enough data samples and in-depth annotations. 
Additionally, the integration of real-time data collection and continuous 
model refinement in clinical practice holds promise for improving the 
accuracy and reliability of automated spine segmentation from MRI. 
Further exploration of interpretability and explainability techniques can 

Table 7 
Comparison with similar state-of-the-art-approaches.

Year Reference Scanners Classes Method DSC Sensitivity Other metrics

2018 (Whitehead, et al., 
2018)

5 2: vertebrae, disc FCN, CNN Vertebrae: 
86.5 %, 
Disc: 83.2 %

​ ​

2018 (Han, et al., 2018) Multiple 6: lumber IVD, other IVD, lumbar 
vertebrae, other vertebrae, NF, NFS

GAN DSC: 87.1 % 86 % Specificity: 89.1 %

2020 (Zhang, et al., 2020) Not 
mentioned

8: L1-L5, S1, T11, T12 (only vertebrae) Adversarial 
Network, LSTM

95 % ​ ​

2020 (Zhou, et al., 2020) 1 1: vertebrae U-net Rater A: 
83.8 %, 
Rater B: 
84.9 %,

​ Rater A: 
IoU: 75.7 % 
Rater B: 
IoU: 74.7 %

2021 (Zhang, et al., 2021) Not 
mentioned

1: Whole spine BN-Unet ​ 84.76 % Accuracy: 94.54 % 
Specificity: 86.27 %

2022 (Wang, et al., 2022) Not 
mentioned

3: lumber vertebrae, IVD, sacrum Attention-Unet 95.01 % 94.53 % Precision: 95.50 %

2023 (Yilizati-Yilihamu, 
et al., 2023)

Not 
mentioned

19: 10 vertebrae, 9 IVDs SAFNet 79.46 % ​ ​

2024 (Kim, Park, Lee, & 
Lee, 2024)

12 1: all the IVDs CycleGAN 92 % 90.2 % Mean IoU: 85.3 % 
Precision: 94 %

​ Proposed 12 9: 5 vertebrae, 4 IVDs Self-ONN-Unet, 
DenseNet

91.032 % 91.44 % Mean IoU: 83.657 % 
Accuracy: 99.776 %

FCN: Fully Convolutional Network, CNN: Convolutional Neural Network, GAN: Generative Adversarial Network, LSTM: Long Short-Term Memory, SAFnet: Scene 
Aware Fusion Network, ONN: Operational Neural Network, IVD: Inter-vertebral Disc, NF: Normal Foramen, NFS: Neural Foraminal Stenosis.

Table 8 
Result of the ablation study.

Criterion Value of the criterion Dice score

Ceiling analysis With ground truth ROI 93.7 %
With ROI from the detection model 91 %

The cascaded model Without the ROI extractor model 74.1 %
With the ROI extractor model 84 %

Number of decoder blocks 3 80 %
5 84.2 %
7 82.3 %

Preprocessing No preprocessing 68.3 %
With slice removal, blur, and CLAHE 78.5 %
With all the preprocessing steps 81.1 %

Learning rate 0.0001 89.3 %
0.001 89.7 %
0.01 84.1 %
0.1 75.8 %
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also enhance the clinical utility of the model, providing insights into the 
decision-making process and increasing trust among healthcare pro
viders. In conclusion, our study presents a promising avenue for 
advancing the field of MRI lumbar image segmentation with outstanding 
performance and robustness. We envision that our research will 
encourage further exploration in this domain, leading to enhanced 
diagnostic tools in the future.
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